A126454 Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) for n>=k>=0.
1, 3, 1, 15, 5, 1, 220, 55, 8, 1, 7315, 1330, 153, 12, 1, 435897, 58905, 5456, 351, 17, 1, 40475358, 4187106, 316251, 17296, 703, 23, 1, 5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1, 962889794295, 63140314380, 3295144749, 134153712
Offset: 0
Examples
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) is illustrated by: T(n=4,k=1) = C( C(6,3) - C(3,3) + 2, n-k) = C(21,3) = 1330; T(n=4,k=2) = C( C(6,3) - C(4,3) + 2, n-k) = C(18,2) = 153; T(n=5,k=2) = C( C(7,3) - C(4,3) + 2, n-k) = C(33,3) = 5456. Triangle begins: 1; 3, 1; 15, 5, 1; 220, 55, 8, 1; 7315, 1330, 153, 12, 1; 435897, 58905, 5456, 351, 17, 1; 40475358, 4187106, 316251, 17296, 703, 23, 1; 5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1; ...
Programs
-
Mathematica
Table[Binomial[Binomial[n+2,3]-Binomial[k+2,3]+2,n-k],{n,0,10},{k,0,n}]// Flatten (* Harvey P. Dale, Dec 17 2020 *)
-
PARI
T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+2, n-k)
Formula
T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 2, n-k) for n>=k>=0.
Comments