A126460 Triangle T, read by rows, where column k of matrix power T^( k(k+1)/2 ) equals left-shifted column (k-1) of T for k>=1.
1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 21, 21, 6, 1, 1, 274, 274, 75, 10, 1, 1, 5806, 5806, 1565, 195, 15, 1, 1, 182766, 182766, 48950, 5940, 420, 21, 1, 1, 8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1, 471517614, 471517614, 125727238, 14989472, 1006880
Offset: 0
Examples
Triangle T begins: 1; 1, 1; 1, 1, 1; 3, 3, 1, 1; 21, 21, 6, 1, 1; 274, 274, 75, 10, 1, 1; 5806, 5806, 1565, 195, 15, 1, 1; 182766, 182766, 48950, 5940, 420, 21, 1, 1; 8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1; ... where column 1 of T^1 equals left-shifted column 0 of T. Matrix cube T^3 begins: 1; 3, 1; 6, 3, (1); 22, 12, (3), 1; 163, 91, (21), 3, 1; 2167, 1219, (274), 33, 3, 1; 46248, 26091, (5806), 661, 48, 3, 1; 1460301, 824853, (182766), 20341, 1369, 66, 3, 1; ... where column 2 of T^3 equals left-shifted column 1 of T. Matrix power T^6 begins: 1; 6, 1; 21, 6, 1; 98, 33, 6, (1); 791, 281, 51, (6), 1; 10850, 3929, 710, (75), 6, 1; 234472, 85557, 15425, (1565), 105, 6, 1; 7444172, 2725402, 490806, (48950), 3080, 141, 6, 1; ... where column 3 of T^6 equals left-shifted column 2 of T.
Crossrefs
Programs
-
PARI
{T(n,k)=abs((matrix(n+1,n+1,r,c, binomial((c-1)*c*(c+1)/3!-k*(k+1)*(k+2)/3!+r-c,r-c))^-1)[n+1,k+1])} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* As Defined by Matrix Product A126460 = A126445^-1*A126450: */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!,r-c))), N=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!+1,r-c)))); (M^-1*N)[n+1,k+1]} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Formula
G.f. of column k: 1/(1-x) = Sum_{n>=0} T(n+k,k)*x^n*(1-x)^p_k(n), so that column k equals the number of subpartitions of the partition p_k defined by: p_k(n) = (n^2 + (3*k+3)*n + (3*k^2+6*k-4))*n/6 for n>=0.
Comments