A126461
Column 0 of triangle A126460; equals the number of subpartitions of the partition {(k^2 + 3*k - 4)*k/6, k>=0}.
Original entry on oeis.org
1, 1, 1, 3, 21, 274, 5806, 182766, 8034916, 471517614, 35682799508, 3388864405941, 395127873991296, 55543575452873070, 9271180003481197642, 1813921568747948684475, 411378931233397975750296
Offset: 0
Equals the number of subpartitions of the partition:
{(k^2 + 3*k - 4)*k/6, k>=0} = [0,0,2,7,16,30,50,77,112,156,210,275,...]
as illustrated by g.f.:
1/(1-x) = 1*(1-x)^0 + 1*x*(1-x)^0 + 1*x^2*(1-x)^2 + 3*x^3*(1-x)^7 + 21*x^4*(1-x)^16 + 274*x^5*(1-x)^30 + 5806*x^6*(1-x)^50 + 182766*x^7*(1-x)^77 ...
A126462
Column 2 of triangle A126460; equals the number of subpartitions of the partition {(k^2 + 9*k + 20)*k/6, k>=0}.
Original entry on oeis.org
1, 1, 6, 75, 1565, 48950, 2145626, 125727238, 9507150815, 902519025315, 105203477607220, 14786330708536422, 2467862211341410635, 482812610434512386665, 109492763990117261581870
Offset: 0
Equals the number of subpartitions of the partition:
{(k^2 + 9*k + 20)*k/6, k>=0} = [0,5,14,28,48,75,110,154,208,273,...]
as illustrated by g.f.:
1/(1-x) = 1*(1-x)^0 + 1*x*(1-x)^5 + 6*x^2*(1-x)^14 + 75*x^3*(1-x)^28 + 1565*x^4*(1-x)^48 + 48950*x^5*(1-x)^75 + 2145626*x^6*(1-x)^110 + 125727238*x^7*(1-x)^154 ...
A126463
Column 3 of triangle A126460; equals the number of subpartitions of the partition {(k^2 + 9*k + 20)*k/6, k>=0}.
Original entry on oeis.org
1, 1, 10, 195, 5940, 257300, 14989472, 1130000385, 107089958760, 12470885416545, 1751753684302150, 292264756622072214, 57165584968923450000, 12962148519535236156640, 3374220800446022166695530
Offset: 0
Equals the number of subpartitions of the partition:
{(k^2 + 12*k + 41)*k/6, k>=0} = [0,9,23,43,70,105,149,203,268,345,...]
as illustrated by g.f.:
1/(1-x) = 1*(1-x)^0 + 1*x*(1-x)^9 + 10*x^2*(1-x)^23 + 195*x^3*(1-x)^43 + 5940*x^4*(1-x)^70 + 257300*x^5*(1-x)^105 + 14989472*x^6*(1-x)^149 + 1130000385*x^7*(1-x)^203 ...
Original entry on oeis.org
1, 2, 3, 8, 50, 635, 13389, 420865, 18491156, 1084804118, 82081329459, 7794746829520, 908790397019076, 127745867968533747, 21322592031518420776, 4171751138526111626665, 946103460280012610769060
Offset: 0
-
{a(n)=sum(k=0,n,abs((matrix(n+1,n+1,r,c, binomial((c-1)*c*(c+1)/3!-k*(k+1)*(k+2)/3!+r-c,r-c))^-1)[n+1,k+1]))}
A126445
Triangle, read by rows, where T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) for n >= k >= 0.
Original entry on oeis.org
1, 1, 1, 6, 3, 1, 120, 36, 6, 1, 4845, 969, 120, 10, 1, 324632, 46376, 4495, 300, 15, 1, 32468436, 3478761, 270725, 15180, 630, 21, 1, 4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1, 840261910995, 56017460733, 2967205528, 122391522, 3921225, 98770, 2016, 36, 1
Offset: 0
Formula: T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) is illustrated by:
T(n=4,k=1) = C(C(6,3) - C(3,3), n-k) = C(19,3) = 969;
T(n=4,k=2) = C(C(6,3) - C(4,3), n-k) = C(16,2) = 120;
T(n=5,k=2) = C(C(7,3) - C(4,3), n-k) = C(31,3) = 4495.
Triangle begins:
1;
1, 1;
6, 3, 1;
120, 36, 6, 1;
4845, 969, 120, 10, 1;
324632, 46376, 4495, 300, 15, 1;
32468436, 3478761, 270725, 15180, 630, 21, 1;
4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1;
-
T[n_, k_]:= Binomial[Binomial[n+2,3] - Binomial[k+2,3], n-k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2022 *)
-
T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!, n-k)
-
def A126445(n,k): return binomial(binomial(n+2,3) - binomial(k+2,3), n-k)
flatten([[A126445(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2022
A126465
Triangle T, read by rows, where row n equals row (n-1) of matrix power T^(n(n+1)/2) concatenated with a trailing '1', for n>0, with T(0,0) = 1.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 33, 6, 1, 1, 855, 105, 10, 1, 1, 40475, 3710, 255, 15, 1, 1, 3039204, 219625, 11935, 525, 21, 1, 1, 331630320, 19545316, 879571, 31584, 966, 28, 1, 1, 49563943161, 2437990653, 93365328, 2856819, 72786, 1638, 36, 1, 1
Offset: 0
Triangle T begins:
1,
1, 1,
3, 1, 1,
33, 6, 1, 1,
855, 105, 10, 1, 1,
40475, 3710, 255, 15, 1, 1,
3039204, 219625, 11935, 525, 21, 1, 1,
331630320, 19545316, 879571, 31584, 966, 28, 1, 1,
49563943161, 2437990653, 93365328, 2856819, 72786, 1638, 36, 1, 1, ...
Matrix cube T^3 begins:
1;
[3, 1]; <-- row 1 of T^3 + '1' = row 2 of T;
12, 3, 1; ...
Matrix power T^6 begins:
1;
6, 1;
[33, 6, 1]; <-- row 2 of T^6 + '1' = row 3 of T.
Matrix power T^10 begins:
1;
10, 1;
75, 10, 1;
[855, 105, 10, 1]; <-- row 3 of T^10 + '1' = row 4 of T.
Matrix power T^15 begins:
1;
15, 1;
150, 15, 1;
1895, 195, 15, 1;
[40475, 3710, 255, 15, 1]; <-- row 4 of T^15 + '1' = row 5 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!,r-c))), N=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!+1,r-c)))); (N*M^-1)[n+1,k+1]}
A126450
Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, 2, 1, 10, 4, 1, 165, 45, 7, 1, 5985, 1140, 136, 11, 1, 376992, 52360, 4960, 325, 16, 1, 36288252, 3819816, 292825, 16215, 666, 22, 1, 4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1, 899749479915, 59487568920, 3127595016, 128164707
Offset: 0
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 1, n-k) = C(20,3) = 1140;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 1, n-k) = C(17,2) = 136;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 1, n-k) = C(32,3) = 4960.
Triangle begins:
1;
2, 1;
10, 4, 1;
165, 45, 7, 1;
5985, 1140, 136, 11, 1;
376992, 52360, 4960, 325, 16, 1;
36288252, 3819816, 292825, 16215, 666, 22, 1;
4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1; ...
A126454
Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, 3, 1, 15, 5, 1, 220, 55, 8, 1, 7315, 1330, 153, 12, 1, 435897, 58905, 5456, 351, 17, 1, 40475358, 4187106, 316251, 17296, 703, 23, 1, 5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1, 962889794295, 63140314380, 3295144749, 134153712
Offset: 0
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 2, n-k) = C(21,3) = 1330;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 2, n-k) = C(18,2) = 153;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 2, n-k) = C(33,3) = 5456.
Triangle begins:
1;
3, 1;
15, 5, 1;
220, 55, 8, 1;
7315, 1330, 153, 12, 1;
435897, 58905, 5456, 351, 17, 1;
40475358, 4187106, 316251, 17296, 703, 23, 1;
5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1; ...
-
Table[Binomial[Binomial[n+2,3]-Binomial[k+2,3]+2,n-k],{n,0,10},{k,0,n}]// Flatten (* Harvey P. Dale, Dec 17 2020 *)
-
T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+2, n-k)
A126457
Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 3, n-k) for n>=k>=0.
Original entry on oeis.org
1, 4, 1, 21, 6, 1, 286, 66, 9, 1, 8855, 1540, 171, 13, 1, 501942, 66045, 5984, 378, 18, 1, 45057474, 4582116, 341055, 18424, 741, 24, 1, 5843355957, 470155077, 29034396, 1353275, 47905, 1326, 31, 1, 1029873432159, 66983637864, 3470108187, 140364532
Offset: 0
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 3, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 3, n-k) = C(22,3) = 1540;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 3, n-k) = C(19,2) = 171;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 3, n-k) = C(34,3) = 5984.
Triangle begins:
1;
4, 1;
21, 6, 1;
286, 66, 9, 1;
8855, 1540, 171, 13, 1;
501942, 66045, 5984, 378, 18, 1;
45057474, 4582116, 341055, 18424, 741, 24, 1;
5843355957, 470155077, 29034396, 1353275, 47905, 1326, 31, 1; ...
Showing 1-9 of 9 results.
Comments