cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A126446 Column 0 of triangle A126445; a(n) = binomial( binomial(n+2,3), n).

Original entry on oeis.org

1, 1, 6, 120, 4845, 324632, 32468436, 4529365776, 840261910995, 200063149171380, 59473554359599446, 21592914273609648996, 9403538945961296957821, 4838670732821812768919800, 2904538537066424425438417800
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [(Binomial(Binomial(n+3, n), n+1)): n in [-1..20]]; // Vincenzo Librandi, Mar 04 2018
  • Mathematica
    Table[Binomial[n (n + 1) (n + 2) / 3!, n], {n, 0, 20}] (* Vincenzo Librandi, Mar 04 2018 *)
  • PARI
    a(n)=binomial(n*(n+1)*(n+2)/3!, n)
    
  • Sage
    [(binomial(binomial(n+3,n),n+1)) for n in range(-1, 12)] # Zerinvary Lajos, Nov 30 2009
    

A126447 Column 1 of triangle A126445; a(n) = C( C(n+3,3) - 1, n).

Original entry on oeis.org

1, 3, 36, 969, 46376, 3478761, 377447148, 56017460733, 10912535409348, 2703343379981793, 830496702831140346, 310006778438284515093, 138247735223480364826280, 72613463426660610635960445
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Binomial[n+3,3]-1,n],{n,0,20}] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    a(n)=binomial((n+1)*(n+2)*(n+3)/3!-1, n)

A126448 Column 2 of triangle A126445; a(n) = C( C(n+4,3) - 4, n).

Original entry on oeis.org

1, 6, 120, 4495, 270725, 24040016, 2967205528, 487444845680, 103073959989495, 27319423696620550, 8881600973913295056, 3478625214672347911080, 1616770762998304775695925, 880246034121663208464847200
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=binomial((n+2)*(n+3)*(n+4)/3!-4, n)

A126449 Row sums of triangle A126445; a(n) = Sum_{k=0..n} C( C(n+2,3) - C(k+2,3), n-k).

Original entry on oeis.org

1, 2, 10, 163, 5945, 375819, 36233754, 4932046435, 899372990826, 211481102358562, 62283285977509563, 22451501854089680715, 9722649026348549481236, 4980474318644453218716459
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=sum(k=0,n,binomial(binomial(n+2,3)-binomial(k+2,3), n-k))

A126460 Triangle T, read by rows, where column k of matrix power T^( k(k+1)/2 ) equals left-shifted column (k-1) of T for k>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 21, 21, 6, 1, 1, 274, 274, 75, 10, 1, 1, 5806, 5806, 1565, 195, 15, 1, 1, 182766, 182766, 48950, 5940, 420, 21, 1, 1, 8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1, 471517614, 471517614, 125727238, 14989472, 1006880
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Amazingly, A126460 = A126445^-1*A126450 = A126450^-1*A126454 = A126454^-1*A126457; and also A126465 = A126450*A126445^-1 = A126454*A126450^-1 = A126457*A126454^-1. Also, column k equals unsigned column k of the matrix inverse of triangle P_k defined by P_k(m,j) = C( C(j+2,3) - C(k+2,3) + m-j, m-j) for m>=j>=0.

Examples

			Triangle T begins:
1;
1, 1;
1, 1, 1;
3, 3, 1, 1;
21, 21, 6, 1, 1;
274, 274, 75, 10, 1, 1;
5806, 5806, 1565, 195, 15, 1, 1;
182766, 182766, 48950, 5940, 420, 21, 1, 1;
8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1; ...
where column 1 of T^1 equals left-shifted column 0 of T.
Matrix cube T^3 begins:
1;
3, 1;
6, 3, (1);
22, 12, (3), 1;
163, 91, (21), 3, 1;
2167, 1219, (274), 33, 3, 1;
46248, 26091, (5806), 661, 48, 3, 1;
1460301, 824853, (182766), 20341, 1369, 66, 3, 1; ...
where column 2 of T^3 equals left-shifted column 1 of T.
Matrix power T^6 begins:
1;
6, 1;
21, 6, 1;
98, 33, 6, (1);
791, 281, 51, (6), 1;
10850, 3929, 710, (75), 6, 1;
234472, 85557, 15425, (1565), 105, 6, 1;
7444172, 2725402, 490806, (48950), 3080, 141, 6, 1; ...
where column 3 of T^6 equals left-shifted column 2 of T.
		

Crossrefs

Columns: A126461, A126462, A126463, A126464; A126465 (dual); A107876 (variant); subpartitions defined: A115728.

Programs

  • PARI
    {T(n,k)=abs((matrix(n+1,n+1,r,c, binomial((c-1)*c*(c+1)/3!-k*(k+1)*(k+2)/3!+r-c,r-c))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* As Defined by Matrix Product A126460 = A126445^-1*A126450: */
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!,r-c))), N=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!+1,r-c)))); (M^-1*N)[n+1,k+1]}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

G.f. of column k: 1/(1-x) = Sum_{n>=0} T(n+k,k)*x^n*(1-x)^p_k(n), so that column k equals the number of subpartitions of the partition p_k defined by: p_k(n) = (n^2 + (3*k+3)*n + (3*k^2+6*k-4))*n/6 for n>=0.

A126465 Triangle T, read by rows, where row n equals row (n-1) of matrix power T^(n(n+1)/2) concatenated with a trailing '1', for n>0, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 33, 6, 1, 1, 855, 105, 10, 1, 1, 40475, 3710, 255, 15, 1, 1, 3039204, 219625, 11935, 525, 21, 1, 1, 331630320, 19545316, 879571, 31584, 966, 28, 1, 1, 49563943161, 2437990653, 93365328, 2856819, 72786, 1638, 36, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Triangle T begins:
1,
1, 1,
3, 1, 1,
33, 6, 1, 1,
855, 105, 10, 1, 1,
40475, 3710, 255, 15, 1, 1,
3039204, 219625, 11935, 525, 21, 1, 1,
331630320, 19545316, 879571, 31584, 966, 28, 1, 1,
49563943161, 2437990653, 93365328, 2856819, 72786, 1638, 36, 1, 1, ...
Matrix cube T^3 begins:
1;
[3, 1]; <-- row 1 of T^3 + '1' = row 2 of T;
12, 3, 1; ...
Matrix power T^6 begins:
1;
6, 1;
[33, 6, 1]; <-- row 2 of T^6 + '1' = row 3 of T.
Matrix power T^10 begins:
1;
10, 1;
75, 10, 1;
[855, 105, 10, 1]; <-- row 3 of T^10 + '1' = row 4 of T.
Matrix power T^15 begins:
1;
15, 1;
150, 15, 1;
1895, 195, 15, 1;
[40475, 3710, 255, 15, 1]; <-- row 4 of T^15 + '1' = row 5 of T.
		

Crossrefs

Columns: A126466, A126467, A126468; A126469 (row sums); A126460 (dual); A101479 (variant).

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!,r-c))), N=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!+1,r-c)))); (N*M^-1)[n+1,k+1]}

A126450 Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 165, 45, 7, 1, 5985, 1140, 136, 11, 1, 376992, 52360, 4960, 325, 16, 1, 36288252, 3819816, 292825, 16215, 666, 22, 1, 4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1, 899749479915, 59487568920, 3127595016, 128164707
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 1, n-k) = C(20,3) = 1140;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 1, n-k) = C(17,2) = 136;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 1, n-k) = C(32,3) = 4960.
Triangle begins:
1;
2, 1;
10, 4, 1;
165, 45, 7, 1;
5985, 1140, 136, 11, 1;
376992, 52360, 4960, 325, 16, 1;
36288252, 3819816, 292825, 16215, 666, 22, 1;
4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1; ...
		

Crossrefs

Columns: A126451, A126452; A126453 (row sums); variants: A126445, A126454, A126457, A107867.

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+1, n-k)

Formula

T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 1, n-k) for n>=k>=0.

A126454 Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) for n>=k>=0.

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 220, 55, 8, 1, 7315, 1330, 153, 12, 1, 435897, 58905, 5456, 351, 17, 1, 40475358, 4187106, 316251, 17296, 703, 23, 1, 5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1, 962889794295, 63140314380, 3295144749, 134153712
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 2, n-k) = C(21,3) = 1330;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 2, n-k) = C(18,2) = 153;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 2, n-k) = C(33,3) = 5456.
Triangle begins:
1;
3, 1;
15, 5, 1;
220, 55, 8, 1;
7315, 1330, 153, 12, 1;
435897, 58905, 5456, 351, 17, 1;
40475358, 4187106, 316251, 17296, 703, 23, 1;
5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1; ...
		

Crossrefs

Columns: A126455, A126456; variants: A126445, A126450, A126457, A107870.

Programs

  • Mathematica
    Table[Binomial[Binomial[n+2,3]-Binomial[k+2,3]+2,n-k],{n,0,10},{k,0,n}]// Flatten (* Harvey P. Dale, Dec 17 2020 *)
  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+2, n-k)

Formula

T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 2, n-k) for n>=k>=0.

A126457 Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 3, n-k) for n>=k>=0.

Original entry on oeis.org

1, 4, 1, 21, 6, 1, 286, 66, 9, 1, 8855, 1540, 171, 13, 1, 501942, 66045, 5984, 378, 18, 1, 45057474, 4582116, 341055, 18424, 741, 24, 1, 5843355957, 470155077, 29034396, 1353275, 47905, 1326, 31, 1, 1029873432159, 66983637864, 3470108187, 140364532
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 3, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 3, n-k) = C(22,3) = 1540;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 3, n-k) = C(19,2) = 171;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 3, n-k) = C(34,3) = 5984.
Triangle begins:
1;
4, 1;
21, 6, 1;
286, 66, 9, 1;
8855, 1540, 171, 13, 1;
501942, 66045, 5984, 378, 18, 1;
45057474, 4582116, 341055, 18424, 741, 24, 1;
5843355957, 470155077, 29034396, 1353275, 47905, 1326, 31, 1; ...
		

Crossrefs

Columns: A126458, A126459; variants: A126445, A126450, A126454, A107873.

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+3, n-k)

Formula

T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 3, n-k) for n>=k>=0.
Showing 1-9 of 9 results.