cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A126445 Triangle, read by rows, where T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) for n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 120, 36, 6, 1, 4845, 969, 120, 10, 1, 324632, 46376, 4495, 300, 15, 1, 32468436, 3478761, 270725, 15180, 630, 21, 1, 4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1, 840261910995, 56017460733, 2967205528, 122391522, 3921225, 98770, 2016, 36, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) is illustrated by:
T(n=4,k=1) = C(C(6,3) - C(3,3), n-k) = C(19,3) = 969;
T(n=4,k=2) = C(C(6,3) - C(4,3), n-k) = C(16,2) = 120;
T(n=5,k=2) = C(C(7,3) - C(4,3), n-k) = C(31,3) = 4495.
Triangle begins:
           1;
           1,         1;
           6,         3,        1;
         120,        36,        6,       1;
        4845,       969,      120,      10,     1;
      324632,     46376,     4495,     300,    15,    1;
    32468436,   3478761,   270725,   15180,   630,   21,  1;
  4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1;
		

Crossrefs

Columns: A126446, A126447, A126448, A126449 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= Binomial[Binomial[n+2,3] - Binomial[k+2,3], n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2022 *)
  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!, n-k)
    
  • Sage
    def A126445(n,k): return binomial(binomial(n+2,3) - binomial(k+2,3), n-k)
    flatten([[A126445(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2022

Formula

T(n,k) = C(n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3!, n-k) for n >= k >= 0.

A126446 Column 0 of triangle A126445; a(n) = binomial( binomial(n+2,3), n).

Original entry on oeis.org

1, 1, 6, 120, 4845, 324632, 32468436, 4529365776, 840261910995, 200063149171380, 59473554359599446, 21592914273609648996, 9403538945961296957821, 4838670732821812768919800, 2904538537066424425438417800
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [(Binomial(Binomial(n+3, n), n+1)): n in [-1..20]]; // Vincenzo Librandi, Mar 04 2018
  • Mathematica
    Table[Binomial[n (n + 1) (n + 2) / 3!, n], {n, 0, 20}] (* Vincenzo Librandi, Mar 04 2018 *)
  • PARI
    a(n)=binomial(n*(n+1)*(n+2)/3!, n)
    
  • Sage
    [(binomial(binomial(n+3,n),n+1)) for n in range(-1, 12)] # Zerinvary Lajos, Nov 30 2009
    

A126447 Column 1 of triangle A126445; a(n) = C( C(n+3,3) - 1, n).

Original entry on oeis.org

1, 3, 36, 969, 46376, 3478761, 377447148, 56017460733, 10912535409348, 2703343379981793, 830496702831140346, 310006778438284515093, 138247735223480364826280, 72613463426660610635960445
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Binomial[n+3,3]-1,n],{n,0,20}] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    a(n)=binomial((n+1)*(n+2)*(n+3)/3!-1, n)

A126448 Column 2 of triangle A126445; a(n) = C( C(n+4,3) - 4, n).

Original entry on oeis.org

1, 6, 120, 4495, 270725, 24040016, 2967205528, 487444845680, 103073959989495, 27319423696620550, 8881600973913295056, 3478625214672347911080, 1616770762998304775695925, 880246034121663208464847200
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=binomial((n+2)*(n+3)*(n+4)/3!-4, n)
Showing 1-4 of 4 results.