cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A126445 Triangle, read by rows, where T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) for n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 120, 36, 6, 1, 4845, 969, 120, 10, 1, 324632, 46376, 4495, 300, 15, 1, 32468436, 3478761, 270725, 15180, 630, 21, 1, 4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1, 840261910995, 56017460733, 2967205528, 122391522, 3921225, 98770, 2016, 36, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) is illustrated by:
T(n=4,k=1) = C(C(6,3) - C(3,3), n-k) = C(19,3) = 969;
T(n=4,k=2) = C(C(6,3) - C(4,3), n-k) = C(16,2) = 120;
T(n=5,k=2) = C(C(7,3) - C(4,3), n-k) = C(31,3) = 4495.
Triangle begins:
           1;
           1,         1;
           6,         3,        1;
         120,        36,        6,       1;
        4845,       969,      120,      10,     1;
      324632,     46376,     4495,     300,    15,    1;
    32468436,   3478761,   270725,   15180,   630,   21,  1;
  4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1;
		

Crossrefs

Columns: A126446, A126447, A126448, A126449 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= Binomial[Binomial[n+2,3] - Binomial[k+2,3], n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2022 *)
  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!, n-k)
    
  • Sage
    def A126445(n,k): return binomial(binomial(n+2,3) - binomial(k+2,3), n-k)
    flatten([[A126445(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2022

Formula

T(n,k) = C(n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3!, n-k) for n >= k >= 0.

A126447 Column 1 of triangle A126445; a(n) = C( C(n+3,3) - 1, n).

Original entry on oeis.org

1, 3, 36, 969, 46376, 3478761, 377447148, 56017460733, 10912535409348, 2703343379981793, 830496702831140346, 310006778438284515093, 138247735223480364826280, 72613463426660610635960445
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Binomial[n+3,3]-1,n],{n,0,20}] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    a(n)=binomial((n+1)*(n+2)*(n+3)/3!-1, n)

A126451 Column 0 of triangle A126450; a(n) = C( C(n+2,3) + 1, n).

Original entry on oeis.org

1, 2, 10, 165, 5985, 376992, 36288252, 4935847320, 899749479915, 211531737340440, 62292206224983306, 22453501436688294427, 9723205992282927449305, 4980663327690172963041600, 2978877731799385928100461400, 2057145404864429538334152506640
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(Binomial(n+2,3)+1,n): n in [0..20]]; // Vincenzo Librandi, Mar 10 2014
  • Mathematica
    Table[Binomial[Binomial[n+2,3]+1,n],{n,0,20}] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n)=binomial(n*(n+1)*(n+2)/3!+1, n)
    

Extensions

More terms from Harvey P. Dale, Mar 08 2014

A126455 Column 0 of triangle A126454; a(n) = C( C(n+2,3) + 2, n).

Original entry on oeis.org

1, 3, 15, 220, 7315, 435897, 40475358, 5373200880, 962889794295, 223581013518060, 65230517839369311, 23345156728397937888, 10052806195411162278095, 5126493560257678027274800
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Binomial[n+2,3]+2,n],{n,0,20}] (* Harvey P. Dale, Dec 08 2018 *)
  • PARI
    a(n)=binomial(n*(n+1)*(n+2)/3!+2, n)

A126458 Column 0 of triangle A126457; a(n) = C( C(n+2,3) + 3, n).

Original entry on oeis.org

1, 4, 21, 286, 8855, 501942, 45057474, 5843355957, 1029873432159, 236236542585120, 68292983465630781, 24268885951464043344, 10392619362579990298763, 5276256293478688846049120
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=binomial(n*(n+1)*(n+2)/3!+3, n)

A126448 Column 2 of triangle A126445; a(n) = C( C(n+4,3) - 4, n).

Original entry on oeis.org

1, 6, 120, 4495, 270725, 24040016, 2967205528, 487444845680, 103073959989495, 27319423696620550, 8881600973913295056, 3478625214672347911080, 1616770762998304775695925, 880246034121663208464847200
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=binomial((n+2)*(n+3)*(n+4)/3!-4, n)

A126449 Row sums of triangle A126445; a(n) = Sum_{k=0..n} C( C(n+2,3) - C(k+2,3), n-k).

Original entry on oeis.org

1, 2, 10, 163, 5945, 375819, 36233754, 4932046435, 899372990826, 211481102358562, 62283285977509563, 22451501854089680715, 9722649026348549481236, 4980474318644453218716459
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=sum(k=0,n,binomial(binomial(n+2,3)-binomial(k+2,3), n-k))
Showing 1-7 of 7 results.