cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A126470 Triangle, read by rows, where row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 7, 5, 3, 1, 1, 1, 10, 25, 25, 26, 11, 12, 5, 3, 1, 1, 1, 15, 65, 110, 136, 117, 92, 70, 43, 32, 17, 12, 5, 3, 1, 1, 1, 21, 140, 385, 616, 784, 694, 687, 478, 411, 255, 222, 127, 91, 50, 39, 17, 12, 5, 3, 1, 1, 1, 28, 266, 1106, 2471, 4032, 4887, 5189
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

Row sums equal the factorials: F(n,1) = n!.
Limit of reversed rows equals A126471. Largest term in rows equal A126472.

Examples

			Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
F(0,q) = F(1,q) = 1;
F(2,q) = 1 + q;
F(3,q) = 1 + 3*q + q^2 + q^3;
F(4,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
Triangle begins:
1;
1;
1, 1;
1, 3, 1, 1;
1, 6, 7, 5, 3, 1, 1;
1, 10, 25, 25, 26, 11, 12, 5, 3, 1, 1;
1, 15, 65, 110, 136, 117, 92, 70, 43, 32, 17, 12, 5, 3, 1, 1;
1, 21, 140, 385, 616, 784, 694, 687, 478, 411, 255, 222, 127, 91, 50, 39, 17, 12, 5, 3, 1, 1;
1, 28, 266, 1106, 2471, 4032, 4887, 5189, 4832, 4240, 3426, 2658, 2143, 1534, 1143, 790, 575, 351, 262, 151, 99, 58, 39, 17, 12, 5, 3, 1, 1;
1, 36, 462, 2730, 8589, 17892, 28519, 35613, 40639, 39200, 37934, 31508, 28076, 21570, 18288, 13451, 11009, 7747, 6120, 4089, 3106, 2056, 1530, 943, 683, 396, 289, 160, 108, 58, 39, 17, 12, 5, 3, 1, 1;
1, 45, 750, 6000, 25977, 70497, 141499, 220500, 291877, 336945, 357638, 347396, 323795, 288162, 247473, 207630, 170336, 139565, 109967, 87581, 66534, 51411, 37845, 28948, 20626, 15284, 10727, 7810, 5169, 3731, 2446, 1700, 1063, 733, 426, 299, 170, 108, 58, 39, 17, 12, 5, 3, 1, 1;
...
E.g.f.: A(x,q) = 1 + x + x^2*(1+q)/2! + x^3*(1+3*q+q^2+q^3)/3! +...
where A(x,q) = exp( Integral A(q*x,q) dx ),
A(q*x,q) = exp( q * Integral A(q^2*x,q) dx ),
A(q^2*x,q) = exp( q^2 * Integral A(q^3*x,q) dx ), ...
A(q^n*x,q) = exp( q^n * Integral A(q^(n+1)*x,q) dx ) for n>=0.
Here the Integral is always in the limits 0..x.
		

Crossrefs

Cf. A126471, A126472; Bell number variant: A126347.

Programs

  • Mathematica
    F[0, ] = 1; F[n, q_] := F[n, q] = Sum[Binomial[n-1, k] F[k, q] F[n-k-1, q] q^k, {k, 0, n-1}];
    row[n_] := CoefficientList[F[n, q], q];
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    F(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*F(k,q)*F(n-k-1,q)*q^k))
    {T(n,k)=Vec(F(n,q)+O(q^(n*(n-1)/2+1)))[k+1]}
    for(n=0,10,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n,k)=local(A=vector(n+2, j, 1+j*x)); for(i=0, n+1, for(j=0, n, m=n+1-j; A[m]=exp(q^(m-1)*intformal(A[m+1]+x*O(x^n))))); polcoeff(n!*polcoeff(A[1], n, x),k,q) \\ From Paul D. Hanna, Oct 04 2008
    for(n=0,10,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Faster to use: A(x,q) = 1 + Integral A(x,q)*A(qx,q) dx */
    {T(n,k)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A*subst(A,x,q*x))); polcoeff(n!*polcoeff(A,n,x),k,q)}
    for(n=0,10,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 04 2008

Formula

From Paul D. Hanna, Oct 04 2008: (Start)
E.g.f. satisfies: A(x,q) = exp( Integral A(q*x,q) dx ); further,
A(q^n*x,q) = exp( q^n * Integral A(q^(n+1)*x,q) dx ) for n>=0, where A(x,q) = Sum_{n>=0} x^n*[Sum_{k=0..n(n-1)/2} T(n,k)*q^k]/n!. (End)
E.g.f. satisfies: d/dx A(x,q) = A(x,q) * A(q*x,q) with A(0,q)=1; i.e., the logarithmic derivative of A(x,q) with respect to x equals A(q*x,q). - Paul D. Hanna, Oct 04 2008

A126471 Limit of reversed rows of triangle A126470, in which row sums equal the factorials.

Original entry on oeis.org

1, 1, 3, 5, 12, 17, 39, 58, 108, 170, 310, 449, 791, 1181, 1960, 2915, 4668, 6822, 10842, 15818, 24254, 35061, 53213, 76061, 113822, 162631, 238660, 337764, 491319, 690530, 994390, 1391968, 1982724, 2757196, 3896450, 5382342, 7546547, 10384787
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126470, row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.

Examples

			Row functions F(n,q) of triangle A126470 begin:
F(0,q) = F(1,q) = 1;
F(1,q) = 1 + q;
F(2,q) = 1 + 3*q + q^2 + q^3;
F(3,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
		

Crossrefs

Cf. A126470, A126472; Bell number variant: A126348.

Programs

  • PARI
    {F(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*F(k,q)*F(n-k-1,q)*q^k))} {a(n)=Vec(F(n+1,q)+O(q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
Showing 1-2 of 2 results.