cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A126471 Limit of reversed rows of triangle A126470, in which row sums equal the factorials.

Original entry on oeis.org

1, 1, 3, 5, 12, 17, 39, 58, 108, 170, 310, 449, 791, 1181, 1960, 2915, 4668, 6822, 10842, 15818, 24254, 35061, 53213, 76061, 113822, 162631, 238660, 337764, 491319, 690530, 994390, 1391968, 1982724, 2757196, 3896450, 5382342, 7546547, 10384787
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126470, row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.

Examples

			Row functions F(n,q) of triangle A126470 begin:
F(0,q) = F(1,q) = 1;
F(1,q) = 1 + q;
F(2,q) = 1 + 3*q + q^2 + q^3;
F(3,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
		

Crossrefs

Cf. A126470, A126472; Bell number variant: A126348.

Programs

  • PARI
    {F(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*F(k,q)*F(n-k-1,q)*q^k))} {a(n)=Vec(F(n+1,q)+O(q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}

A126472 Largest term in rows of triangle A126470, in which row sums equal factorials.

Original entry on oeis.org

1, 1, 1, 3, 7, 26, 136, 784, 5189, 40639, 357638, 3472240, 37835023, 449901885, 5763035223, 79697811456, 1185091117180, 18789393725696, 316557520950918, 5664877511610114, 106815500916218123, 2123415404236087790
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126470, row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.

Examples

			Row functions F(n,q) of triangle A126470 begin:
F(0,q) = F(1,q) = 1;
F(1,q) = 1 + q;
F(2,q) = 1 + 3*q + q^2 + q^3;
F(3,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
		

Crossrefs

Programs

  • PARI
    
    				

A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006, May 28 2007

Keywords

Comments

Limit of reversed rows equals A126348. Largest term in rows equal A126349.

Examples

			Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
  B(0,q) = 1;
  B(1,q) = 1;
  B(2,q) = 1 + q;
  B(3,q) = 1 + 2*q + q^2 + q^3;
  B(4,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6.
Triangle begins:
  1;
  1;
  1, 1;
  1, 2, 1, 1;
  1, 3, 3, 4, 2, 1, 1;
  1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1;
  1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1;
  1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1;
  ...
		

Crossrefs

Row sums give A000110.
Cf. A126348, A126349; factorial variant: A126470.
Cf. A346772.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(b(n-1, max(m, j), t+j) , j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Aug 02 2021
  • Mathematica
    B[0, ] = 1; B[n, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *)
  • PARI
    {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
    row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))}
    
  • PARI
    /* Alternative formula for the n-th q-Bell number (row n): */ {B(n,q)=local(inf=100);round((0^n + sum(k=1, inf,((q^k-1)/(q-1))^n/prod(i=1,k,(q^i-1)/(q-1)))) / prod(k=1, inf,1 + (q-1)/q^k))}

Formula

G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n).
Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A346772(n). - Alois P. Heinz, Aug 02 2021
Conjecture: R(n,n) is the (n+1)-th reversed row polynomial where R(0,0) = 1, R(n,k) = R(n-1,n-1) + x^n * Sum_{j=0..k-1} R(n-1,j) for 0 <= k <= n. - Mikhail Kurkov, Jul 06 2025

Extensions

Keyword:tabl changed to tabf by R. J. Mathar, Oct 21 2010

A126444 a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*a(n-1-k)*2^k for n>0, with a(0)=1.

Original entry on oeis.org

1, 1, 3, 19, 225, 4801, 185523, 13298659, 1815718305, 481790947681, 251592291767043, 260427247041910099, 536497603929547755585, 2204489516030261302702561, 18090090482887693483393912563, 296659627048147988400872084439139
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2007

Keywords

Comments

Generated by a generalization of a recurrence for the factorials.

Crossrefs

Cf. A126470.

Programs

  • Mathematica
    b = ConstantArray[0,21]; b[[1]]=1; b[[2]]=1; Do[b[[n+1]] = Sum[Binomial[n-1,k]*b[[k+1]]*b[[n-k]]*2^k,{k,0,n-1}],{n,2,20}]; b  (* Vaclav Kotesovec, Feb 23 2014 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*a(k)*a(n-1-k)*2^k))
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+intformal(A*subst(A,x,2*x+x*O(x^n))));n!*polcoeff(A,n,x)} \\ Paul D. Hanna, Nov 22 2008

Formula

a(n) = Sum_{k=0..n*(n-1)/2} A126470(n,k)*2^k.
E.g.f. satisfies: A'(x) = A(x)*A(2x) with A(0)=1; the logarithmic derivative of e.g.f. A(x) equals A(2x). - Paul D. Hanna, Nov 22 2008
a(n) ~ c * 2^(n*(n-1)/2), where c = 7.32081762965209017732559... - Vaclav Kotesovec, Feb 23 2014

Extensions

More terms from Vincenzo Librandi, Feb 25 2014

A232433 E.g.f. satisfies: A(x,q) = exp( Integral A(x,q)*A(q*x,q) dx ).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 2, 1, 24, 36, 22, 14, 6, 2, 1, 120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1, 720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1, 5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2013

Keywords

Examples

			E.g.f.: A(x,q) = 1 + (1)*x + (2 + q)*x^2/2! + (6 + 6*q + 2*q^2 + q^3)*x^3/3!
+ (24 + 36*q + 22*q^2 + 14*q^3 + 6*q^4 + 2*q^5 + q^6)*x^4/4!
+ (120 + 240*q + 210*q^2 + 160*q^3 + 104*q^4 + 56*q^5 + 32*q^6 + 14*q^7 + 6*q^8 + 2*q^9 + q^10)*x^5/5! +...
The triangle of coefficients T(n,k) of x^n*q^k, for n>=0, k=0..n*(n-1)/2, in e.g.f. A(x,q) begins:
[1];
[1];
[2, 1];
[6, 6, 2, 1];
[24, 36, 22, 14, 6, 2, 1];
[120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];
[720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1];
[5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1];
[40320, 141120, 231840, 275520, 280056, 251496, 212112, 170424, 129716, 95248, 67632, 46616, 31280, 20576, 13142, 8232, 5004, 2954, 1706, 966, 524, 276, 142, 68, 32, 14, 6, 2, 1]; ...
The limit of the reversed rows (A232434) begins:
[1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, ...].
		

Crossrefs

Programs

  • Mathematica
    nmax = 8; A[, ] = 0; Do[A[x_, q_] = Exp[Integrate[A[x, q] A[q x, q], x]] + O[x]^n // Normal // Simplify, {n, nmax}];
    CoefficientList[#, q]& /@ (CoefficientList[A[x, q], x] Range[0, nmax-1]!) // Flatten (* Jean-François Alcover, Oct 27 2018 *)
  • PARI
    {T(n,k)=local(A=1+x);for(i=1,n,A=exp(intformal(A*subst(A,x,x*y +x*O(x^n)),x)));n!*polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0,12,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))

Formula

E.g.f. satisfies: d/dx A(x,q) = A(x,q)^2 * A(q*x,q).
Row sums equal the odd double factorials.
Limit of reversed rows yield A232434.
Showing 1-5 of 5 results.