cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A126348 Limit of reversed rows of triangle A126347, in which row sums equal Bell numbers (A000110).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 20, 33, 53, 84, 131, 202, 308, 465, 695, 1030, 1514, 2209, 3201, 4609, 6596, 9386, 13284, 18705, 26211, 36561, 50776, 70226, 96742, 132765, 181540, 247369, 335940, 454756, 613689, 825698, 1107755, 1482038, 1977465, 2631664
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126347, row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
Row sums of A253830. a(n) equals the number of colored compositions of n, as defined in A253830, whose associated color partition has distinct parts. An example is given below. - Peter Bala, Jan 20 2015

Examples

			a(5) = 12: The colored compositions (defined in A253830) of 5 whose color partitions have distinct parts are
5(c1), 5(c2), 5(c3), 5(c4), 5(c5),
1(c1) + 4(c2), 1(c1) + 4(c3), 1(c1) + 4(c4),
3(c1) + 2(c2),
2(c1) + 3(c2), 2(c1) + 3(c3), 2(c2) + 3(c3). - _Peter Bala_, Jan 20 2015
		

Crossrefs

Cf. A126347, A126349; factorial variant: A126471. A253830, A307599, A307601, A307602.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x + x^k)/(1 - x), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2019 *)
  • PARI
    {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
    {a(n)=Vec(B(n+1,'q)+O('q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
    
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1; polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t * x^k / (1 - x) / (1 - x^k) + x * O(x^n), 1), n))} /* Michael Somos, Aug 17 2008 */

Formula

1 + Sum_{k>0} x^(k * (k + 1) / 2) / ((1 - x)^k * (1 - x) * (1 - x^2) ... (1 - x^k)). - Michael Somos, Aug 17 2008
G.f.: Product_{k>0} (1+x^k/(1-x)). - Vladeta Jovovic, Oct 05 2008
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)/(d*(1 - x)^d)). - Ilya Gutkovskiy, Apr 19 2019

A126349 Largest term in rows of triangle A126347, in which row sums equal Bell numbers (A000110).

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 29, 101, 392, 1721, 8180, 42234, 232893, 1376660, 8608564, 56880860, 395780193, 2887365769, 22022011448, 175148070545, 1451626482840, 12489021006783, 111407399288300, 1028527130941484, 9818171726308337
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126347, row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1.

Crossrefs

Programs

  • PARI
    
    				

A126443 a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*2^k for n>0, with a(0)=1.

Original entry on oeis.org

1, 1, 3, 17, 179, 3489, 127459, 8873137, 1195313043, 315321098561, 164239990789571, 169810102632595281, 349630019758589841523, 1436268949679165936016097, 11784559509424676876673518499, 193243076262167105764611875139569
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2007

Keywords

Comments

Generated by a generalization of a recurrence for the Bell numbers (A000110).
Starting with offset 1 = eigensequence of triangle A013609. - Gary W. Adamson, Sep 04 2009

Crossrefs

Cf. A013609. - Gary W. Adamson, Sep 04 2009
Column k=2 of A306245.

Programs

  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*a(k)*2^k))

Formula

a(n) = Sum_{k=0..n*(n-1)/2} A126347(n,k)*2^k.
G.f. A(x) satisfies: A(x) = 1 + x*A(2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Sep 02 2019
a(n) ~ c * 2^(n*(n-1)/2), where c = A081845 = 4.7684620580627434482997985... - Vaclav Kotesovec, Sep 16 2019

A126470 Triangle, read by rows, where row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 7, 5, 3, 1, 1, 1, 10, 25, 25, 26, 11, 12, 5, 3, 1, 1, 1, 15, 65, 110, 136, 117, 92, 70, 43, 32, 17, 12, 5, 3, 1, 1, 1, 21, 140, 385, 616, 784, 694, 687, 478, 411, 255, 222, 127, 91, 50, 39, 17, 12, 5, 3, 1, 1, 1, 28, 266, 1106, 2471, 4032, 4887, 5189
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

Row sums equal the factorials: F(n,1) = n!.
Limit of reversed rows equals A126471. Largest term in rows equal A126472.

Examples

			Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
F(0,q) = F(1,q) = 1;
F(2,q) = 1 + q;
F(3,q) = 1 + 3*q + q^2 + q^3;
F(4,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
Triangle begins:
1;
1;
1, 1;
1, 3, 1, 1;
1, 6, 7, 5, 3, 1, 1;
1, 10, 25, 25, 26, 11, 12, 5, 3, 1, 1;
1, 15, 65, 110, 136, 117, 92, 70, 43, 32, 17, 12, 5, 3, 1, 1;
1, 21, 140, 385, 616, 784, 694, 687, 478, 411, 255, 222, 127, 91, 50, 39, 17, 12, 5, 3, 1, 1;
1, 28, 266, 1106, 2471, 4032, 4887, 5189, 4832, 4240, 3426, 2658, 2143, 1534, 1143, 790, 575, 351, 262, 151, 99, 58, 39, 17, 12, 5, 3, 1, 1;
1, 36, 462, 2730, 8589, 17892, 28519, 35613, 40639, 39200, 37934, 31508, 28076, 21570, 18288, 13451, 11009, 7747, 6120, 4089, 3106, 2056, 1530, 943, 683, 396, 289, 160, 108, 58, 39, 17, 12, 5, 3, 1, 1;
1, 45, 750, 6000, 25977, 70497, 141499, 220500, 291877, 336945, 357638, 347396, 323795, 288162, 247473, 207630, 170336, 139565, 109967, 87581, 66534, 51411, 37845, 28948, 20626, 15284, 10727, 7810, 5169, 3731, 2446, 1700, 1063, 733, 426, 299, 170, 108, 58, 39, 17, 12, 5, 3, 1, 1;
...
E.g.f.: A(x,q) = 1 + x + x^2*(1+q)/2! + x^3*(1+3*q+q^2+q^3)/3! +...
where A(x,q) = exp( Integral A(q*x,q) dx ),
A(q*x,q) = exp( q * Integral A(q^2*x,q) dx ),
A(q^2*x,q) = exp( q^2 * Integral A(q^3*x,q) dx ), ...
A(q^n*x,q) = exp( q^n * Integral A(q^(n+1)*x,q) dx ) for n>=0.
Here the Integral is always in the limits 0..x.
		

Crossrefs

Cf. A126471, A126472; Bell number variant: A126347.

Programs

  • Mathematica
    F[0, ] = 1; F[n, q_] := F[n, q] = Sum[Binomial[n-1, k] F[k, q] F[n-k-1, q] q^k, {k, 0, n-1}];
    row[n_] := CoefficientList[F[n, q], q];
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    F(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*F(k,q)*F(n-k-1,q)*q^k))
    {T(n,k)=Vec(F(n,q)+O(q^(n*(n-1)/2+1)))[k+1]}
    for(n=0,10,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n,k)=local(A=vector(n+2, j, 1+j*x)); for(i=0, n+1, for(j=0, n, m=n+1-j; A[m]=exp(q^(m-1)*intformal(A[m+1]+x*O(x^n))))); polcoeff(n!*polcoeff(A[1], n, x),k,q) \\ From Paul D. Hanna, Oct 04 2008
    for(n=0,10,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Faster to use: A(x,q) = 1 + Integral A(x,q)*A(qx,q) dx */
    {T(n,k)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A*subst(A,x,q*x))); polcoeff(n!*polcoeff(A,n,x),k,q)}
    for(n=0,10,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 04 2008

Formula

From Paul D. Hanna, Oct 04 2008: (Start)
E.g.f. satisfies: A(x,q) = exp( Integral A(q*x,q) dx ); further,
A(q^n*x,q) = exp( q^n * Integral A(q^(n+1)*x,q) dx ) for n>=0, where A(x,q) = Sum_{n>=0} x^n*[Sum_{k=0..n(n-1)/2} T(n,k)*q^k]/n!. (End)
E.g.f. satisfies: d/dx A(x,q) = A(x,q) * A(q*x,q) with A(0,q)=1; i.e., the logarithmic derivative of A(x,q) with respect to x equals A(q*x,q). - Paul D. Hanna, Oct 04 2008

A346772 Total sum of block indices of the elements over all partitions of [n].

Original entry on oeis.org

0, 1, 5, 22, 100, 482, 2475, 13527, 78476, 481687, 3117962, 21218851, 151387882, 1129430737, 8790433999, 71222812912, 599577147056, 5235054113412, 47331036294905, 442462325254995, 4270909302907430, 42514043248222709, 435920900603529954, 4599155199953703373
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2021

Keywords

Examples

			a(3) = 22 = 3 + 4 + 4 + 5 + 6, summing block indices 111, 112, 121, 122, 123 of the 5 partitions of [3]: 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0], add(
         (p-> p+[0, p[1]*j])(b(n-1, max(m, j))), j=1..m+1))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[
         Function[p, p+{0, p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} A120057(n,k).
a(n) = Sum_{k=0..n*(n-1)/2} (n+k) * A126347(n,k).
a(n) = Sum_{k=1..n} k * A270236(n,k).

A383253 Number of compositions of n with parts in standard order.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 53, 98, 182, 340, 638, 1202, 2273, 4312, 8204, 15650, 29925, 57344, 110101, 211771, 407987, 787174, 1520851, 2942030, 5697842, 11046881, 21438881, 41645541, 80967881, 157547508, 306791828, 597847686, 1165828440, 2274890125
Offset: 0

Views

Author

John Tyler Rascoe, May 06 2025

Keywords

Comments

A composition with parts in standard order satisfies the condition that for any part p > 1, the part p - 1 has already appeared. All compositions of this kind have first part 1.

Examples

			a(6) = 9 counts: (1,1,1,1,1,1), (1,1,1,1,2), (1,1,1,2,1), (1,1,2,1,1), (1,2,1,1,1), (1,1,2,2), (1,2,1,2), (1,2,2,1), (1,2,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          b(n-j, max(i, j)), j=1..min(n, i+1)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..36);  # Alois P. Heinz, May 08 2025
  • PARI
    A_x(N) = {my(x='x+O('x^(N+1))); Vec(1 + sum(i=1,(N/2)+1, x^(i*(i+1)/2)/prod(j=1,i, 1 - (x-x^(j+1))/(1-x))))}
    A_x(40)

Formula

G.f.: 1 + Sum_{i>0} x^(i*(i+1)/2) / Product_{j=1..i} 1 - (x - x^(j+1))/(1 - x).

A380822 Triangle read by rows: T(n,k) is the number of compositions of n with k pairs of equal adjacent parts and all parts in standard order.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 3, 1, 0, 1, 2, 1, 4, 1, 0, 1, 3, 3, 3, 5, 1, 0, 1, 2, 10, 5, 4, 6, 1, 0, 1, 5, 9, 17, 8, 5, 7, 1, 0, 1, 8, 16, 22, 26, 10, 6, 8, 1, 0, 1, 10, 35, 33, 37, 37, 12, 7, 9, 1, 0, 1, 19, 44, 80, 59, 56, 48, 14, 8, 10, 1, 0, 1
Offset: 1

Views

Author

John Tyler Rascoe, May 08 2025

Keywords

Comments

A composition with parts in standard order satisfies the condition that for any part p > 1, the part p - 1 has already appeared. All compositions of this kind have first part 1.

Examples

			Triangle begins:
     k=0   1   2   3   4  5  6  7  8  9
 n=1  [1],
 n=2  [0,  1],
 n=3  [1,  0,  1],
 n=4  [1,  1,  0,  1],
 n=5  [0,  3,  1,  0,  1],
 n=6  [2,  1,  4,  1,  0, 1],
 n=7  [3,  3,  3,  5,  1, 0, 1],
 n=8  [2, 10,  5,  4,  6, 1, 0, 1],
 n=9  [5,  9, 17,  8,  5, 7, 1, 0, 1],
 n=10 [8, 16, 22, 26, 10, 6, 8, 1, 0, 1],
...
Row n = 6 counts:
 T(6,0) = 2: (1,2,1,2), (1,2,3).
 T(6,1) = 1: (1,2,2,1).
 T(6,2) = 4: (1,1,1,2,1), (1,1,2,1,1), (1,1,2,2), (1,2,1,1,1).
 T(6,3) = 1: (1,1,1,1,2).
 T(6,4) = 0: .
 T(6,5) = 1: (1,1,1,1,1,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l, i) option remember; expand(`if`(n=0, 1, add(
          `if`(j=l, x, 1)*b(n-j, j, max(i, j)), j=1..min(n, i+1))))
        end:
    T:= (n, k)-> coeff(b(n, 0$2), x, k):
    seq(seq(T(n, k), k=0..n-1), n=1..12);  # Alois P. Heinz, May 08 2025
  • PARI
    G(k,N) = {my(x='x+O('x^N)); if(k<1,1, G(k-1,N) * x^k * (1 + (1/(1 - sum(j=1,k, x^j/(1-(z-1)*x^j)))) * sum(j=1,k, z^(if(j==k,1,0)) * x^j/(1-(z-1)*x^j))))}
    T_xz(max_row) = {my(N = max_row+1, x='x+O('x^N), h = sum(i=1,N/2+1, G(i,N))); vector(N-1, n, Vecrev(polcoeff(h, n)))}
    T_xz(10)

Formula

G.f.: Sum_{i>0} G(i) where G(k) = G(k-1) * x*k * (1 + 1/(1 - Sum_{j=1..k} ( x^j/(1 - (z-1)*x^j) )) * Sum_{j=1..k} ( z^[j=k] * x^j/(1 - (z-1)*x^j) )) and G(0) = 1.

A383713 Triangle read by rows: T(n,k) is the number of compositions of n with k parts all in standard order.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 3, 4, 1, 0, 0, 0, 0, 4, 6, 5, 1, 0, 0, 0, 0, 2, 10, 10, 6, 1, 0, 0, 0, 0, 1, 9, 20, 15, 7, 1, 0, 0, 0, 0, 1, 7, 25, 35, 21, 8, 1, 0, 0, 0, 0, 0, 7, 26, 55, 56, 28, 9, 1, 0, 0, 0, 0, 0, 4, 29, 71, 105, 84, 36, 10, 1
Offset: 0

Views

Author

John Tyler Rascoe, May 06 2025

Keywords

Comments

A composition with parts in standard order satisfies the condition that for any part p > 1, the part p - 1 has already appeared. All compositions of this kind have first part 1.

Examples

			Triangle begins:
     k=0  1  2  3  4   5   6   7   8  9 10
 n=0  [1],
 n=1  [0, 1],
 n=2  [0, 0, 1],
 n=3  [0, 0, 1, 1],
 n=4  [0, 0, 0, 2, 1],
 n=5  [0, 0, 0, 1, 3,  1],
 n=6  [0, 0, 0, 1, 3,  4,  1],
 n=7  [0, 0, 0, 0, 4,  6,  5,  1],
 n=8  [0, 0, 0, 0, 2, 10, 10,  6,  1],
 n=9  [0, 0, 0, 0, 1,  9, 20, 15,  7, 1],
 n=10 [0, 0, 0, 0, 1,  7, 25, 35, 21, 8, 1],
 ...
Row n = 6 counts:
 T(6,3) = 1: (1,2,3).
 T(6,4) = 3: (1,1,2,2), (1,2,1,2), (1,2,2,1).
 T(6,5) = 4: (1,1,1,1,2), (1,1,1,2,1), (1,1,2,1,1), (1,2,1,1,1).
 T(6,6) = 1: (1,1,1,1,1,1).
		

Crossrefs

Cf. A000110 (column sums), A047998, A107429, A126347 (triangle transposed with no zeros), A278984, A383253 (row sums).

Programs

  • PARI
    T_xy(max_row) = {my(N = max_row+1, x='x+O('x^N), h = 1 + sum(i=1,1+(N/2), y^i * x^(i*(i+1)/2)/prod(j=1,i, 1 - y*(x-x^(j+1))/(1-x)))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
    T_xy(10)

Formula

G.f.: 1 + Sum_{i>0} y^i * x^(i*(i+1)/2) / Product_{j=1..i} 1 - y*(x - x^(j+1))/(1 - x).

A383751 Number of Carlitz compositions of n with parts in standard order.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 3, 2, 5, 8, 10, 19, 31, 44, 73, 123, 193, 315, 524, 847, 1392, 2317, 3810, 6303, 10506, 17451, 29066, 48603, 81223, 135965, 228153, 383014, 643756, 1083693, 1825640, 3078574, 5197246, 8780823, 14847669, 25128385, 42558687, 72131730, 122343844
Offset: 0

Views

Author

John Tyler Rascoe, May 08 2025

Keywords

Comments

A composition with parts in standard order satisfies the condition that for any part p > 1, the part p - 1 has already appeared. All compositions of this kind have first part 1.

Examples

			a(9) = 5 counts: (1,2,1,2,1,2), (1,2,1,2,3), (1,2,1,3,2), (1,2,3,1,2), (1,2,3,2,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l, i) option remember; `if`(n=0, 1, add(
          `if`(j=l, 0, b(n-j, j, max(i, j))), j=1..min(n, i+1)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..43);  # Alois P. Heinz, May 09 2025
  • PARI
    G(k,N) = {my(x='x+O('x^N)); if(k<1,1, G(k-1,N) * x^k * (1 + (1/(1 - sum(j=1,k, x^j/(1+x^j)))) * sum(j=1,k-1, x^j/(1+x^j))))}
    A_x(N) = {my(x='x+O('x^N)); Vec(sum(i=0,N/2+1, G(i,N+1)))}
    A_x(50)

Formula

G.f.: Sum_{i>=0} G(i) where G(k) = G(k-1) * x*k * (1 + 1/(1 - Sum_{j=1..k} ( x^j/(1+x^j) )) * Sum_{j=1..k-1} ( x^j/(1+x^j) )) and G(0) = 1.
Showing 1-9 of 9 results.