cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006, May 28 2007

Keywords

Comments

Limit of reversed rows equals A126348. Largest term in rows equal A126349.

Examples

			Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
  B(0,q) = 1;
  B(1,q) = 1;
  B(2,q) = 1 + q;
  B(3,q) = 1 + 2*q + q^2 + q^3;
  B(4,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6.
Triangle begins:
  1;
  1;
  1, 1;
  1, 2, 1, 1;
  1, 3, 3, 4, 2, 1, 1;
  1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1;
  1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1;
  1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1;
  ...
		

Crossrefs

Row sums give A000110.
Cf. A126348, A126349; factorial variant: A126470.
Cf. A346772.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(b(n-1, max(m, j), t+j) , j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Aug 02 2021
  • Mathematica
    B[0, ] = 1; B[n, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *)
  • PARI
    {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
    row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))}
    
  • PARI
    /* Alternative formula for the n-th q-Bell number (row n): */ {B(n,q)=local(inf=100);round((0^n + sum(k=1, inf,((q^k-1)/(q-1))^n/prod(i=1,k,(q^i-1)/(q-1)))) / prod(k=1, inf,1 + (q-1)/q^k))}

Formula

G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n).
Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A346772(n). - Alois P. Heinz, Aug 02 2021
Conjecture: R(n,n) is the (n+1)-th reversed row polynomial where R(0,0) = 1, R(n,k) = R(n-1,n-1) + x^n * Sum_{j=0..k-1} R(n-1,j) for 0 <= k <= n. - Mikhail Kurkov, Jul 06 2025

Extensions

Keyword:tabl changed to tabf by R. J. Mathar, Oct 21 2010

A307599 Expansion of Product_{k>=1} (1 - x^k/(1 - x)).

Original entry on oeis.org

1, -1, -2, -2, -1, 2, 6, 11, 15, 16, 11, -2, -26, -61, -105, -152, -192, -209, -183, -89, 98, 400, 830, 1385, 2035, 2715, 3314, 3668, 3556, 2703, 790, -2521, -7550, -14542, -23591, -34546, -46901, -59670, -71261, -79358, -80830, -71690, -47133, -1684, 70504, 175168, 317232
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2019

Keywords

Crossrefs

Convolution inverse of A227682.

Programs

  • Mathematica
    m = 46; CoefficientList[Series[Product[1 - x^k/(1 - x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1-x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-x)^d)))))

Formula

G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} 1/(d*(1-x)^d)).

A307601 Expansion of Product_{k>=1} (1 - x^k/(1 + x)).

Original entry on oeis.org

1, -1, 0, 0, -1, 2, -4, 7, -11, 16, -21, 26, -30, 33, -33, 28, -14, -13, 59, -131, 238, -390, 598, -873, 1225, -1663, 2194, -2822, 3544, -4347, 5202, -6059, 6838, -7420, 7633, -7238, 5911, -3226, -1365, 8552, -19190, 34320, -55189, 83266, -120254, 168094, -228958
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    m = 46; CoefficientList[Series[Product[1 - x^k/(1 + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1+x)^d)))))

Formula

G.f.: exp(-Sum_{k>=1} x^k * Sum_{d|k} 1/(d*(1+x)^d)).

A307602 Expansion of Product_{k>=1} (1 + x^k/(1 + x)).

Original entry on oeis.org

1, 1, 0, 2, -1, 4, -2, 5, -1, 4, 3, -2, 16, -21, 47, -62, 104, -131, 191, -229, 304, -344, 420, -437, 477, -413, 336, -76, -270, 927, -1792, 3155, -4904, 7402, -10519, 14694, -19761, 26226, -33847, 43162, -53776, 66178, -79679, 94562, -109606, 124618, -137468, 147061
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x + x^k)/(1 + x), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k/(1+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)/(d*(1+x)^d)))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) / (d*(1+x)^d)).

A126471 Limit of reversed rows of triangle A126470, in which row sums equal the factorials.

Original entry on oeis.org

1, 1, 3, 5, 12, 17, 39, 58, 108, 170, 310, 449, 791, 1181, 1960, 2915, 4668, 6822, 10842, 15818, 24254, 35061, 53213, 76061, 113822, 162631, 238660, 337764, 491319, 690530, 994390, 1391968, 1982724, 2757196, 3896450, 5382342, 7546547, 10384787
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126470, row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.

Examples

			Row functions F(n,q) of triangle A126470 begin:
F(0,q) = F(1,q) = 1;
F(1,q) = 1 + q;
F(2,q) = 1 + 3*q + q^2 + q^3;
F(3,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
		

Crossrefs

Cf. A126470, A126472; Bell number variant: A126348.

Programs

  • PARI
    {F(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*F(k,q)*F(n-k-1,q)*q^k))} {a(n)=Vec(F(n+1,q)+O(q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}

A126349 Largest term in rows of triangle A126347, in which row sums equal Bell numbers (A000110).

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 29, 101, 392, 1721, 8180, 42234, 232893, 1376660, 8608564, 56880860, 395780193, 2887365769, 22022011448, 175148070545, 1451626482840, 12489021006783, 111407399288300, 1028527130941484, 9818171726308337
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126347, row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1.

Crossrefs

Programs

  • PARI
    
    				

A253830 Triangular array with g.f. Product_{n >= 1} (1 + (x*z)^n/(1 - z)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 2, 0, 1, 1, 4, 3, 3, 0, 1, 1, 5, 4, 5, 4, 0, 1, 1, 6, 5, 7, 8, 4, 0, 1, 1, 7, 6, 9, 13, 10, 6, 0, 1, 1, 8, 7, 11, 19, 16, 13, 8, 0, 1, 1, 9, 8, 13, 26, 23, 22, 18, 10, 0, 1, 1, 10, 9, 15, 34, 31, 33, 31, 25, 12, 0, 1, 1, 11, 10, 17, 43, 40, 46, 47, 47, 30, 15
Offset: 0

Views

Author

Peter Bala, Jan 20 2015

Keywords

Comments

A colored composition of n is defined as a composition of n where each part p comes in one of p colors (denoted by an integer from 1 to p) and the color numbers are nondecreasing through the composition.
The color numbers thus form a partition, called the color partition, of some integer. For example, 2(c1) + 1(c1) + 5(c3) + 4(c3) + 6(c4) is a colored composition of 18 (the color number of a part is shown after the part prefaced by the letter c) and has the associated color partition (1,1,3,3,4).
T(n,k) equals the number of colored compositions of n whose associated color partition has distinct parts with sum (called the weight of the color partition) equal to k. An example is given below.

Examples

			Triangle begins
n\k| 0  1  2  3  4  5  6  7
= = = = = = = = = = = = = =
0  | 1
1  | 0  1
2  | 0  1  1
3  | 0  1  1  2
4  | 0  1  1  3  2
5  | 0  1  1  4  3  3
6  | 0  1  1  5  4  5  4
7  | 0  1  1  6  5  7  8  4
...
Row 5 polynomial: x + x^2 + 4*x^3 + 3*x*4 + 3*x^5.
Colored             x^(weight of color partition)
compositions
of 5 with
distinct colored
parts
= = = = = = = = = = = = = = = = = = = = = =
5(c1)                        x
5(c2)                        x^2
1(c1) + 4(c2)                x^3
2(c1) + 3(c2)                x^3
3(c1) + 2(c2)                x^3
5(c3)                        x^3
1(c1) + 4(c3)                x^4
2(c1) + 3(c3)                x^4
5(c4)                        x^4
1(c1) + 4(c4)                x^5
2(c2) + 3(c3)                x^5
5(c5)                        x^5
		

Crossrefs

Cf. A008289, A126348 (row sums), A253829.

Programs

  • Maple
    G := product(1+(x*z)^j/(1-z), j = 1 .. 12): Gser := simplify(series(G, z = 0, 14)): for n to 12 do P[n] := coeff(Gser, z^n) end do: for n to 12 do seq(coeff(P[n], x^j), j = 1 .. n) end do;

Formula

G.f.: G(x,z) := Product_{n >= 1} (1 + (x*z)^n/(1 - z)) = 1 + x*z + (x + x^2)*z^2 + (x + x^2 + 2*x^3)*z^3 + (x + x^2 + 3*x^3 + 2*x^4)*z^4 + .... Note, G(x*z/(x - 1),(x - 1)/x) is the generating function of A008289.
T(n,k) = Sum_{i = 1..k} binomial(i+n-k-1,i-1)*A008289(k,i).
Row sums are A126348.

A336989 Expansion of Product_{k>=1} (1 + x^k / (1 - k*x)).

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 107, 343, 1184, 4391, 17448, 74082, 335131, 1610301, 8191728, 43973853, 248305235, 1470474074, 9107950029, 58856529464, 395914407606, 2766669954699, 20047716439541, 150384068021507, 1166037568730402, 9332538119883810, 77004693701288392, 654279226353488820
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 27; CoefficientList[Series[Product[1 + x^k/(1 - k*x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 10 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k/(1-k*x)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)/(d*(1-k/d*x)^d)))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) / (d * (1 - k/d * x)^d)).

A307761 L.g.f.: log(Product_{k>=1} (1 + x^k/(1 - x))) = Sum_{k>=1} a(k)*x^k/k.

Original entry on oeis.org

1, 3, 7, 11, 16, 21, 29, 35, 43, 48, 56, 65, 79, 87, 97, 99, 103, 111, 134, 156, 182, 190, 185, 161, 141, 133, 178, 263, 378, 471, 497, 387, 161, -133, -341, -313, 75, 782, 1645, 2300, 2379, 1596, -42, -2222, -4232, -5241, -4464, -1551, 3263, 9023, 14287, 17249, 16219, 9912, -2074
Offset: 1

Views

Author

Seiichi Manyama, Apr 27 2019

Keywords

Examples

			L.g.f.: L(x) = x/1 + 3*x^2/2 + 7*x^3/3 + 11*x^4/4 + 16*x^5/5 + 21*x^6/6 + 29*x^7/7 + 35*x^8/8 + ... .
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 12*x^5 + 20*x^6 + 33*x^7 + 53*x^8 + ... + A126348(n)*x^n + ... .
		

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(log(prod(k=1, N, 1+x^k/(1-x)))))
    
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)/(d*(1-x)^d)))))

Formula

Product {k>=1} (1 + x^k/(1 - x)) = exp(Sum_{k>=1} a(k)*x^k/k).

A322613 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x)*x^k).

Original entry on oeis.org

1, 0, 2, 9, 44, 370, 3084, 32088, 336384, 4407408, 59113440, 896773680, 14403234240, 250498939392, 4625127900288, 92232410538240, 1925532322237440, 42709138254167040, 997150775080043520, 24416143271431649280, 626110124433676185600, 16824255461119247339520, 471015493365385119191040
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*mul((1-log(1-x)*x^k),k=1..n),x,n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Dec 21 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 - Log[1 - x] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(d + 1) Log[1/(1 - x)]^d/d, {d, Divisors[k]}] x^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(d+1)*log(1/(1 - x))^d/d ) * x^k).
Showing 1-10 of 10 results.