A126348 Limit of reversed rows of triangle A126347, in which row sums equal Bell numbers (A000110).
1, 1, 2, 4, 7, 12, 20, 33, 53, 84, 131, 202, 308, 465, 695, 1030, 1514, 2209, 3201, 4609, 6596, 9386, 13284, 18705, 26211, 36561, 50776, 70226, 96742, 132765, 181540, 247369, 335940, 454756, 613689, 825698, 1107755, 1482038, 1977465, 2631664
Offset: 0
Keywords
Examples
a(5) = 12: The colored compositions (defined in A253830) of 5 whose color partitions have distinct parts are 5(c1), 5(c2), 5(c3), 5(c4), 5(c5), 1(c1) + 4(c2), 1(c1) + 4(c3), 1(c1) + 4(c4), 3(c1) + 2(c2), 2(c1) + 3(c2), 2(c1) + 3(c3), 2(c2) + 3(c3). - _Peter Bala_, Jan 20 2015
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from Seiichi Manyama)
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x + x^k)/(1 - x), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2019 *)
-
PARI
{B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))} {a(n)=Vec(B(n+1,'q)+O('q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
-
PARI
{a(n) = local(t); if( n<0, 0, t = 1; polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t * x^k / (1 - x) / (1 - x^k) + x * O(x^n), 1), n))} /* Michael Somos, Aug 17 2008 */
Formula
1 + Sum_{k>0} x^(k * (k + 1) / 2) / ((1 - x)^k * (1 - x) * (1 - x^2) ... (1 - x^k)). - Michael Somos, Aug 17 2008
G.f.: Product_{k>0} (1+x^k/(1-x)). - Vladeta Jovovic, Oct 05 2008
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)/(d*(1 - x)^d)). - Ilya Gutkovskiy, Apr 19 2019
Comments