cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A352860 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k) * 2^k * a(k).

Original entry on oeis.org

1, 1, 5, 67, 2273, 187411, 36539465, 16496912587, 16958655627233, 39148957534778851, 200638280176080172025, 2261092739579072893806907, 55582179517311967755693514193, 2960001149710485505367113202321491, 339497331023047752386812273780566932585
Offset: 0

Author

Ilya Gutkovskiy, Apr 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] 2^k a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
    nmax = 14; A[] = 0; Do[A[x] = 1 + (Exp[x] - 1) A[2 x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 2^j*binomial(i, j)*v[j+1])); v; \\ Seiichi Manyama, Jun 18 2022

Formula

E.g.f. A(x) satisfies: A(x) = 1 + (exp(x) - 1) * A(2*x).
a(n) ~ c * n! * 2^(n*(n-1)/2), where c = 1.572986203588985421674040830458773854660492965929302012... - Vaclav Kotesovec, Apr 07 2022

A306245 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} k^j * binomial(n-1,j) * A(j,k) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 17, 15, 1, 1, 1, 5, 43, 179, 52, 1, 1, 1, 6, 89, 1279, 3489, 203, 1, 1, 1, 7, 161, 5949, 108472, 127459, 877, 1, 1, 1, 8, 265, 20591, 1546225, 26888677, 8873137, 4140, 1
Offset: 0

Author

Seiichi Manyama, Jul 28 2019

Keywords

Examples

			Square array begins:
   1,  1,    1,      1,       1,        1, ...
   1,  1,    1,      1,       1,        1, ...
   1,  2,    3,      4,       5,        6, ...
   1,  5,   17,     43,      89,      161, ...
   1, 15,  179,   1279,    5949,    20591, ...
   1, 52, 3489, 108472, 1546225, 12950796, ...
		

Crossrefs

Columns k=0..4 give A000012, A000110, A126443, A355081, A355082.
Rows n=0+1, 2 give A000012, A000027(n+1).
Main diagonal gives A309401.
Cf. A309386.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(k^j*binomial(n-1, j)*A(j, k), j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jul 28 2019
  • Mathematica
    A[0, _] = 1;
    A[n_, k_] := A[n, k] = Sum[k^j Binomial[n-1, j] A[j, k], {j, 0, n-1}];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 29 2020 *)

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(k * x / (1 - x)) / (1 - x). - Seiichi Manyama, Jun 18 2022

A355081 G.f. A(x) satisfies A(x) = 1 + x * A(3 * x / (1 - x)) / (1 - x).

Original entry on oeis.org

1, 1, 4, 43, 1279, 108472, 26888677, 19761575473, 43356335678176, 284807217244068223, 5608422162798704960959, 331227791701602557410058404, 58679652813856265804094312228601, 31185477505022553490008128886444268657
Offset: 0

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Column k=3 of A306245.

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 3^j*binomial(i-1, j)*v[j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * binomial(n-1,k) * a(k).

A355082 G.f. A(x) satisfies A(x) = 1 + x * A(4 * x / (1 - x)) / (1 - x).

Original entry on oeis.org

1, 1, 5, 89, 5949, 1546225, 1591006901, 6526287232201, 106972340665773165, 7011394913950382306529, 1838058207026378316690626149, 1927362102757461997768349891040825, 8083963777926072174628168609626454270621
Offset: 0

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Column k=4 of A306245.

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 4^j*binomial(i-1, j)*v[j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * binomial(n-1,k) * a(k).

A309401 a(n) = A306245(n,n).

Original entry on oeis.org

1, 1, 3, 43, 5949, 12950796, 586826390263, 669793946192984257, 22558227235537152753501561, 25741074696455818592335996518315259, 1124843928218943684789052411802502269971863691, 2100464404490451025972467064515428575200326254804659324780
Offset: 0

Author

Seiichi Manyama, Jul 28 2019

Keywords

Crossrefs

Main diagonal of A306245.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(k^j*binomial(n-1, j)*b(j, k), j=0..n-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 28 2019
  • Mathematica
    b[0, _] = 1;
    b[n_, k_] := b[n, k] = Sum[k^j Binomial[n-1, j] b[j, k], {j, 0, n-1}];
    a[n_] := b[n, n];
    a /@ Range[0, 12] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + k ** j * ncr(i - 1, j) * ary[j]}}
      ary
    end
    def A309401(n)
      (0..n).map{|i| A(i, i)}
    end
    p A309401(20)

A352859 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k+1) * 2^k * a(k).

Original entry on oeis.org

1, 1, 4, 25, 280, 5665, 211516, 14907673, 2021820016, 535262714881, 279317901141172, 289064917007756761, 595455410823115765768, 2446703815513439818406305, 20077597428602000393057306476, 329252263598282049972950683567705, 10794203801863458962317873561872563680
Offset: 0

Author

Ilya Gutkovskiy, Apr 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1] 2^k a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
    nmax = 16; A[] = 0; Do[A[x] = 1 + x A[2 x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(2*x/(1 - x)) / (1 - x)^2.
a(n) ~ c * 2^(n*(n-1)/2), where c = 8.12511731924148105991770742530352144084320407825344... - Vaclav Kotesovec, Apr 07 2022

A193660 Q-residue of the triangle A038207 of coefficients of (x+2)^n, where Q is the triangle given by t(i,j)=1 for 0<=i<=j. (See Comments.)

Original entry on oeis.org

1, 2, 5, 22, 201, 3690, 131149, 9004286, 1204317329, 316525415890, 164556516205461, 169974659148800742, 349799994417738642265, 1436618749673583674658362, 11785996128174350460348176861, 193254862258295280115072223316430
Offset: 0

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

For the definition of Q-residue, see A193649.

Crossrefs

Programs

  • Mathematica
    q[n_, k_] := Coefficient[(x + 2)^n, x, k]; (* A038207 *)
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
    p[n_, k_] := 1
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 16}]    (* A038207 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* A126443 *)
    TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]

A376177 Triangle, read by rows, where T(n,k) = T(n-1,k-1) + 2*T(n,k-1) when k > 0, else T(n,0) = T(n-1,n-1) when n > 0, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 3, 3, 7, 17, 17, 37, 81, 179, 179, 375, 787, 1655, 3489, 3489, 7157, 14689, 30165, 61985, 127459, 127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137, 8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043, 1195313043, 2399499223, 4816872179, 9669750231, 19412036179, 38970206423, 78234836403, 157062892759, 315321098561, 315321098561
Offset: 0

Author

George Plousos and Paul D. Hanna, Sep 22 2024

Keywords

Comments

This triangle was found by George Plousos while exploring a variation of Aitken's array (A011971).

Examples

			G.f.: A(x,y) = 1 + (3*y + 1)*x + (17*y^2 + 7*y + 3)*x^2 + (179*y^3 + 81*y^2 + 37*y + 17)*x^3 + (3489*y^4 + 1655*y^3 + 787*y^2 + 375*y + 179)*x^4 + (127459*y^5 + 61985*y^4 + 30165*y^3 + 14689*y^2 + 7157*y + 3489)*x^5 + (8873137*y^6 + 4372839*y^5 + 2155427*y^4 + 1062631*y^3 + 523971*y^2 + 258407*y + 127459)*x^6 + ...
which is defined by A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y),
where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443,
B(x) = 1 + x + 3*x^2 + 17*x^3 + 179*x^4 + 3489*x^5 + 127459*x^6 + 8873137*x^7 + 1195313043*x^8 + 315321098561*x^9 + ... + A126443(n)*x^n + ...
This triangle begins
  1,
  1, 3,
  3, 7, 17,
  17, 37, 81, 179,
  179, 375, 787, 1655, 3489,
  3489, 7157, 14689, 30165, 61985, 127459,
  127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137,
  8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043,
  ...
		

Crossrefs

Programs

  • PARI
    {A126443(n) = if(n==0, 1, sum(k=0, n-1, binomial(n-1, k) * 2^k * A126443(k)))}
    {T(n,k) = sum(j=0,k, binomial(k,j) * 2^j * A126443(n-k+j) )}
    for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))

Formula

If k > 0, T(n,k) = T(n-1,k-1) + 2*T(n,k-1), else if n > 0, T(n,0) = T(n-1,n-1), with T(0,0) = 1.
T(n,k) = Sum_{j=0..k} binomial(k,j) * 2^j * A126443(n-k+j), where A126443(m) = Sum_{k=0..m-1} binomial(m-1, k) * 2^k * A126443(k) for m > 0 with A126443(0) = 1.
G.f. A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y), where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443 given therein by Ilya Gutkovskiy.

A355109 a(n) = 1 + Sum_{k=1..n-1} binomial(n-1,k) * 2^(k-1) * a(k).

Original entry on oeis.org

1, 1, 2, 7, 44, 493, 9974, 372403, 26247008, 3559692121, 942403603562, 491777568765151, 508938530329020692, 1048381120745440503877, 4307758467916752367544414, 35349370769806113877653011083, 579693879415731511179957972407624
Offset: 0

Author

Ilya Gutkovskiy, Jun 19 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; 1+add(a(k)*
          binomial(n-1, k)*2^(k-1), k=1..n-1)
        end:
    seq(a(n), n=0..16);  # Alois P. Heinz, Jun 19 2022
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] 2^(k - 1) a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 16}]
    nmax = 16; A[] = 0; Do[A[x] = (2 - x + x A[2 x/(1 - x)])/(2 (1 - x)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = (2 - x + x * A(2*x/(1 - x))) / (2 * (1 - x)).
Showing 1-10 of 10 results.