A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0
Keywords
A352860 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k) * 2^k * a(k).
1, 1, 5, 67, 2273, 187411, 36539465, 16496912587, 16958655627233, 39148957534778851, 200638280176080172025, 2261092739579072893806907, 55582179517311967755693514193, 2960001149710485505367113202321491, 339497331023047752386812273780566932585
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..77
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] 2^k a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 14}] nmax = 14; A[] = 0; Do[A[x] = 1 + (Exp[x] - 1) A[2 x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 2^j*binomial(i, j)*v[j+1])); v; \\ Seiichi Manyama, Jun 18 2022
Formula
E.g.f. A(x) satisfies: A(x) = 1 + (exp(x) - 1) * A(2*x).
a(n) ~ c * n! * 2^(n*(n-1)/2), where c = 1.572986203588985421674040830458773854660492965929302012... - Vaclav Kotesovec, Apr 07 2022
A306245 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} k^j * binomial(n-1,j) * A(j,k) for n > 0.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 17, 15, 1, 1, 1, 5, 43, 179, 52, 1, 1, 1, 6, 89, 1279, 3489, 203, 1, 1, 1, 7, 161, 5949, 108472, 127459, 877, 1, 1, 1, 8, 265, 20591, 1546225, 26888677, 8873137, 4140, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 1, 5, 17, 43, 89, 161, ... 1, 15, 179, 1279, 5949, 20591, ... 1, 52, 3489, 108472, 1546225, 12950796, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..55, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add(k^j*binomial(n-1, j)*A(j, k), j=0..n-1)) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Jul 28 2019
-
Mathematica
A[0, _] = 1; A[n_, k_] := A[n, k] = Sum[k^j Binomial[n-1, j] A[j, k], {j, 0, n-1}]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 29 2020 *)
Formula
G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(k * x / (1 - x)) / (1 - x). - Seiichi Manyama, Jun 18 2022
A355081 G.f. A(x) satisfies A(x) = 1 + x * A(3 * x / (1 - x)) / (1 - x).
1, 1, 4, 43, 1279, 108472, 26888677, 19761575473, 43356335678176, 284807217244068223, 5608422162798704960959, 331227791701602557410058404, 58679652813856265804094312228601, 31185477505022553490008128886444268657
Offset: 0
Keywords
Programs
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 3^j*binomial(i-1, j)*v[j+1])); v;
Formula
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * binomial(n-1,k) * a(k).
A355082 G.f. A(x) satisfies A(x) = 1 + x * A(4 * x / (1 - x)) / (1 - x).
1, 1, 5, 89, 5949, 1546225, 1591006901, 6526287232201, 106972340665773165, 7011394913950382306529, 1838058207026378316690626149, 1927362102757461997768349891040825, 8083963777926072174628168609626454270621
Offset: 0
Keywords
Programs
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 4^j*binomial(i-1, j)*v[j+1])); v;
Formula
a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * binomial(n-1,k) * a(k).
A309401 a(n) = A306245(n,n).
1, 1, 3, 43, 5949, 12950796, 586826390263, 669793946192984257, 22558227235537152753501561, 25741074696455818592335996518315259, 1124843928218943684789052411802502269971863691, 2100464404490451025972467064515428575200326254804659324780
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..36
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(k^j*binomial(n-1, j)*b(j, k), j=0..n-1)) end: a:= n-> b(n$2): seq(a(n), n=0..12); # Alois P. Heinz, Jul 28 2019
-
Mathematica
b[0, _] = 1; b[n_, k_] := b[n, k] = Sum[k^j Binomial[n-1, j] b[j, k], {j, 0, n-1}]; a[n_] := b[n, n]; a /@ Range[0, 12] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
-
Ruby
def ncr(n, r) return 1 if r == 0 (n - r + 1..n).inject(:*) / (1..r).inject(:*) end def A(k, n) ary = [1] (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + k ** j * ncr(i - 1, j) * ary[j]}} ary end def A309401(n) (0..n).map{|i| A(i, i)} end p A309401(20)
A352859 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k+1) * 2^k * a(k).
1, 1, 4, 25, 280, 5665, 211516, 14907673, 2021820016, 535262714881, 279317901141172, 289064917007756761, 595455410823115765768, 2446703815513439818406305, 20077597428602000393057306476, 329252263598282049972950683567705, 10794203801863458962317873561872563680
Offset: 0
Keywords
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1] 2^k a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}] nmax = 16; A[] = 0; Do[A[x] = 1 + x A[2 x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Formula
G.f. A(x) satisfies: A(x) = 1 + x * A(2*x/(1 - x)) / (1 - x)^2.
a(n) ~ c * 2^(n*(n-1)/2), where c = 8.12511731924148105991770742530352144084320407825344... - Vaclav Kotesovec, Apr 07 2022
A193660 Q-residue of the triangle A038207 of coefficients of (x+2)^n, where Q is the triangle given by t(i,j)=1 for 0<=i<=j. (See Comments.)
1, 2, 5, 22, 201, 3690, 131149, 9004286, 1204317329, 316525415890, 164556516205461, 169974659148800742, 349799994417738642265, 1436618749673583674658362, 11785996128174350460348176861, 193254862258295280115072223316430
Offset: 0
Keywords
Comments
For the definition of Q-residue, see A193649.
Programs
-
Mathematica
q[n_, k_] := Coefficient[(x + 2)^n, x, k]; (* A038207 *) r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}] p[n_, k_] := 1 v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}] Table[v[n], {n, 0, 16}] (* A038207 *) TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]] Table[r[k], {k, 0, 8}] (* A126443 *) TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
A376177 Triangle, read by rows, where T(n,k) = T(n-1,k-1) + 2*T(n,k-1) when k > 0, else T(n,0) = T(n-1,n-1) when n > 0, with T(0,0) = 1.
1, 1, 3, 3, 7, 17, 17, 37, 81, 179, 179, 375, 787, 1655, 3489, 3489, 7157, 14689, 30165, 61985, 127459, 127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137, 8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043, 1195313043, 2399499223, 4816872179, 9669750231, 19412036179, 38970206423, 78234836403, 157062892759, 315321098561, 315321098561
Offset: 0
Comments
This triangle was found by George Plousos while exploring a variation of Aitken's array (A011971).
Examples
G.f.: A(x,y) = 1 + (3*y + 1)*x + (17*y^2 + 7*y + 3)*x^2 + (179*y^3 + 81*y^2 + 37*y + 17)*x^3 + (3489*y^4 + 1655*y^3 + 787*y^2 + 375*y + 179)*x^4 + (127459*y^5 + 61985*y^4 + 30165*y^3 + 14689*y^2 + 7157*y + 3489)*x^5 + (8873137*y^6 + 4372839*y^5 + 2155427*y^4 + 1062631*y^3 + 523971*y^2 + 258407*y + 127459)*x^6 + ... which is defined by A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y), where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443, B(x) = 1 + x + 3*x^2 + 17*x^3 + 179*x^4 + 3489*x^5 + 127459*x^6 + 8873137*x^7 + 1195313043*x^8 + 315321098561*x^9 + ... + A126443(n)*x^n + ... This triangle begins 1, 1, 3, 3, 7, 17, 17, 37, 81, 179, 179, 375, 787, 1655, 3489, 3489, 7157, 14689, 30165, 61985, 127459, 127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137, 8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043, ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1275
Programs
Formula
If k > 0, T(n,k) = T(n-1,k-1) + 2*T(n,k-1), else if n > 0, T(n,0) = T(n-1,n-1), with T(0,0) = 1.
T(n,k) = Sum_{j=0..k} binomial(k,j) * 2^j * A126443(n-k+j), where A126443(m) = Sum_{k=0..m-1} binomial(m-1, k) * 2^k * A126443(k) for m > 0 with A126443(0) = 1.
G.f. A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y), where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443 given therein by Ilya Gutkovskiy.
A355109 a(n) = 1 + Sum_{k=1..n-1} binomial(n-1,k) * 2^(k-1) * a(k).
1, 1, 2, 7, 44, 493, 9974, 372403, 26247008, 3559692121, 942403603562, 491777568765151, 508938530329020692, 1048381120745440503877, 4307758467916752367544414, 35349370769806113877653011083, 579693879415731511179957972407624
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; 1+add(a(k)* binomial(n-1, k)*2^(k-1), k=1..n-1) end: seq(a(n), n=0..16); # Alois P. Heinz, Jun 19 2022
-
Mathematica
a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] 2^(k - 1) a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 16}] nmax = 16; A[] = 0; Do[A[x] = (2 - x + x A[2 x/(1 - x)])/(2 (1 - x)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Formula
G.f. A(x) satisfies: A(x) = (2 - x + x * A(2*x/(1 - x))) / (2 * (1 - x)).
Comments
Examples
Crossrefs
Programs
Mathematica
Formula