cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: George Plousos

George Plousos's wiki page.

George Plousos has authored 2 sequences.

A376177 Triangle, read by rows, where T(n,k) = T(n-1,k-1) + 2*T(n,k-1) when k > 0, else T(n,0) = T(n-1,n-1) when n > 0, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 3, 3, 7, 17, 17, 37, 81, 179, 179, 375, 787, 1655, 3489, 3489, 7157, 14689, 30165, 61985, 127459, 127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137, 8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043, 1195313043, 2399499223, 4816872179, 9669750231, 19412036179, 38970206423, 78234836403, 157062892759, 315321098561, 315321098561
Offset: 0

Author

George Plousos and Paul D. Hanna, Sep 22 2024

Keywords

Comments

This triangle was found by George Plousos while exploring a variation of Aitken's array (A011971).

Examples

			G.f.: A(x,y) = 1 + (3*y + 1)*x + (17*y^2 + 7*y + 3)*x^2 + (179*y^3 + 81*y^2 + 37*y + 17)*x^3 + (3489*y^4 + 1655*y^3 + 787*y^2 + 375*y + 179)*x^4 + (127459*y^5 + 61985*y^4 + 30165*y^3 + 14689*y^2 + 7157*y + 3489)*x^5 + (8873137*y^6 + 4372839*y^5 + 2155427*y^4 + 1062631*y^3 + 523971*y^2 + 258407*y + 127459)*x^6 + ...
which is defined by A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y),
where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443,
B(x) = 1 + x + 3*x^2 + 17*x^3 + 179*x^4 + 3489*x^5 + 127459*x^6 + 8873137*x^7 + 1195313043*x^8 + 315321098561*x^9 + ... + A126443(n)*x^n + ...
This triangle begins
  1,
  1, 3,
  3, 7, 17,
  17, 37, 81, 179,
  179, 375, 787, 1655, 3489,
  3489, 7157, 14689, 30165, 61985, 127459,
  127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137,
  8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043,
  ...
		

Crossrefs

Programs

  • PARI
    {A126443(n) = if(n==0, 1, sum(k=0, n-1, binomial(n-1, k) * 2^k * A126443(k)))}
    {T(n,k) = sum(j=0,k, binomial(k,j) * 2^j * A126443(n-k+j) )}
    for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))

Formula

If k > 0, T(n,k) = T(n-1,k-1) + 2*T(n,k-1), else if n > 0, T(n,0) = T(n-1,n-1), with T(0,0) = 1.
T(n,k) = Sum_{j=0..k} binomial(k,j) * 2^j * A126443(n-k+j), where A126443(m) = Sum_{k=0..m-1} binomial(m-1, k) * 2^k * A126443(k) for m > 0 with A126443(0) = 1.
G.f. A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y), where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443 given therein by Ilya Gutkovskiy.

A334904 a(n) is the least integer b such that the fractions (b^0)/p, (b^1)/p, ..., (b^(r-1))/p where p is the n-th prime, produce the A006556(n) distinct cycles.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 3, 2, 3, 2, 1, 2, 1, 1, 2, 7, 2, 3, 2, 3, 1, 2, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 7, 1, 2, 3, 2, 1, 2, 1, 1, 7, 7, 3, 1, 1, 1, 6, 2, 3, 2, 2, 2, 11, 1, 2, 2, 1, 2, 2, 2, 7, 1, 2, 1, 1, 1, 2, 3, 7, 1, 2, 7, 1, 3, 2, 3, 3, 1, 2, 2, 13
Offset: 1

Author

George Plousos, May 15 2020

Keywords

Comments

With the exception of the prime numbers 2 and 5, the values of r mentioned above form the sequence A006556.
Detection of all different cycles of digits in the decimal expansions of 1/p, 2/p, ..., (p-1)/p where p=n-th prime. If for the n-th prime p the number of different cycles of digits is equal to r, then there will be the smallest integer b in the interval 0 < b < p with the following property: The fractions (b^0)/p, (b^1)/p, ..., (b^(r-1))/p will produce r different cycles of digits. In this case the term a(n) of the sequence becomes equal to b.

Examples

			For n=13, prime(13)=41, there are A006556(13)=8 cycles.
With b=3, we get (normally, these fractions should be in the form (b^k mod p)/p):
  frac(3^0 / 41) = 0.02439 (1)
  frac(3^1 / 41) = 0.07317 (2)
  frac(3^2 / 41) = 0.21951 (3)
  frac(3^3 / 41) = 0.65853 (4)
  frac(3^4 / 41) = 0.97560 (5)
  frac(3^5 / 41) = 0.92682 (6)
  frac(3^6 / 41) = 0.78048 (7)
  frac(3^7 / 41) = 0.34146 (8=r)
So a(13) = 3.
		

Crossrefs

Cf. A006556.

Programs

  • PARI
    \\ default(realprecision, 1000)
    nbc(p) = (p-1)/znorder(Mod(10, p));
    len(p) = znorder(Mod(10, p));
    pad(x, sz) = {while(#digits(x) != sz, x*=10); x;}
    cmpc(x,y) = {if (x==y, return (0)); my(dx=digits(x), dy=digits(y), v=dx); for (k=1, #dx, v=vector(#v, k, if (k==#v, v[1], v[k+1])); if (v == dy, return (0));); return (1);}
    decimals(x, sz) = pad(floor(1.0*10^sz*x), sz);
    a(n) = {my(p=prime(n)); if ((p==2), return (1)); if ((p==5), return (2)); my(sz=len(p), nb=nbc(p), m=1); while (#vecsort(vector(f(p), k, decimals((m^(k-1) % p)/p, sz)),cmpc,8) != nb, m++); m;} \\ Michel Marcus, May 29 2020