cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306245 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} k^j * binomial(n-1,j) * A(j,k) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 17, 15, 1, 1, 1, 5, 43, 179, 52, 1, 1, 1, 6, 89, 1279, 3489, 203, 1, 1, 1, 7, 161, 5949, 108472, 127459, 877, 1, 1, 1, 8, 265, 20591, 1546225, 26888677, 8873137, 4140, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2019

Keywords

Examples

			Square array begins:
   1,  1,    1,      1,       1,        1, ...
   1,  1,    1,      1,       1,        1, ...
   1,  2,    3,      4,       5,        6, ...
   1,  5,   17,     43,      89,      161, ...
   1, 15,  179,   1279,    5949,    20591, ...
   1, 52, 3489, 108472, 1546225, 12950796, ...
		

Crossrefs

Columns k=0..4 give A000012, A000110, A126443, A355081, A355082.
Rows n=0+1, 2 give A000012, A000027(n+1).
Main diagonal gives A309401.
Cf. A309386.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(k^j*binomial(n-1, j)*A(j, k), j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jul 28 2019
  • Mathematica
    A[0, _] = 1;
    A[n_, k_] := A[n, k] = Sum[k^j Binomial[n-1, j] A[j, k], {j, 0, n-1}];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 29 2020 *)

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(k * x / (1 - x)) / (1 - x). - Seiichi Manyama, Jun 18 2022

A355082 G.f. A(x) satisfies A(x) = 1 + x * A(4 * x / (1 - x)) / (1 - x).

Original entry on oeis.org

1, 1, 5, 89, 5949, 1546225, 1591006901, 6526287232201, 106972340665773165, 7011394913950382306529, 1838058207026378316690626149, 1927362102757461997768349891040825, 8083963777926072174628168609626454270621
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Column k=4 of A306245.

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 4^j*binomial(i-1, j)*v[j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * binomial(n-1,k) * a(k).

A355073 G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*3^(n*(n-1)/2)) ).

Original entry on oeis.org

1, 1, 4, 55, 2539, 383860, 187659181, 293630900689, 1459799672901004, 22924423319469919651, 1131844225175191511724871, 175015470856131731421651730600, 84480805958219938739735661779357401, 126948830401157131161305967764668449231937
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*3^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n);
    
  • PARI
    T(n, k) = if(k==1, 1, sum(j=1, n-1, 3^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));
    a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));
Showing 1-3 of 3 results.