cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126694 Expansion of g.f.: 1/(1 - 7*x*c(x)), where c(x) is the g.f. for A000108.

Original entry on oeis.org

1, 7, 56, 455, 3710, 30282, 247254, 2019087, 16488710, 134656130, 1099686056, 8980749862, 73342721956, 598965319960, 4891549246290, 39947649057855, 326239122661830, 2664286127154330, 21758336553841440, 177693081299126610
Offset: 0

Views

Author

Philippe Deléham, Feb 14 2007

Keywords

Comments

The Hankel transform of this sequence is 7^n = [1, 7, 49, 343, 2401, ...] . The Hankel transform of the aerated sequence with g.f. 1/(1 - 7*x^2*c(x^2)) is also 7^n.
Numbers have the same parity as the Catalan numbers, that is, a(n) is even except for n of the form 2^m - 1. Follows from c(x) = 1/(1 - x*c(x)) == 1/(1 - 7*x*c(x)) (mod 2). - Peter Bala, Jul 24 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(7*Sqrt(1-4*x) -5) )); // G. C. Greubel, May 05 2019
    
  • Mathematica
    CoefficientList[Series[2/(-5+7*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 05 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(2/(7*sqrt(1-4*x) -5)) \\ G. C. Greubel, May 05 2019
    
  • Sage
    (2/(7*sqrt(1-4*x) -5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019

Formula

a(0) = 1, a(n) = (49*a(n-1) - 7*A000108(n-1))/6 for n >= 1.
a(n) = Sum_{k = 0..n} A106566(n,k)*7^k.
a(n) = Sum_{k = 0..n} A039599(n,k)*6^k.
a(n) ~ 5 * 7^(2*n) / 6^(n+1). - Vaclav Kotesovec, Nov 29 2021

Extensions

a(16) corrected by G. C. Greubel, May 05 2019