cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A130332 Integer values of n!!/sum(i=0..n,n), with n>=1.

Original entry on oeis.org

1, 1, 21, 1485, 6144, 225225, 17694720, 59520825, 6539968512, 24325703325, 145332633600, 14230536445125, 2596962041856000, 11288163762500625, 78354054748569600, 11665426077721040625, 86068915523813376000
Offset: 0

Views

Author

Keywords

Comments

After the ninth term all the other numbers end in 0 or 5.

Examples

			5!! = 5*3*1 = 15; 5+4+3+2+1 = 15; 15/15 = 1.
13!! = 13*11*9*7*5*3*1 = 135135; 13+12+11+10+9+8+7+6+5+4+3+2+1 = 91; 135135/91 = 1485.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do k:=i; w:=i-2; while w>0 do k:=k*w; w:=w-2; od; j:=sum('w','w'=1..i); a:=k/j; if trunc(a)=a then print(a) fi; od; end: P(100);
  • Mathematica
    Select[Table[n!!/((n(n+1))/2),{n,50}],IntegerQ] (* Harvey P. Dale, Jul 24 2019 *)

A370601 a(n) is the number of integer values of the function F_2n(x) = Product_{i=0..2n-1} (x + i) / Sum_{i=0..2n-1} (x + i).

Original entry on oeis.org

0, 1, 3, 23, 37, 156, 371, 1207, 2826, 8738, 14839, 60738, 80177, 148702, 466545, 1673039, 2077633, 4771287, 10665251, 26790730, 72170979, 212182718, 248771227, 1074691776, 1488526850, 2533202074, 8444006973, 13950326222, 18313391221, 74263958970, 164820521219
Offset: 1

Views

Author

Vladimir Letsko, Feb 23 2024

Keywords

Comments

If k is an odd prime then F_k(x) = Product_{i=0..k} (x + i)/ Sum_{i=0..k} (x + i) is not an integer if and only if x==(k+1)/2 (mod k). If k is odd but not prime, then F_k(x) is an integer for all positive integers x. On the other hand, for every even k, there is only a finite number of integer values of F_k(x).

Examples

			a(3) = 3 because F_6(x) has exactly 3 integer values: F_6(5) = 3360, F_6(10) = 48048, and F_6(35) = 12282816.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local d; d := doublefactorial(2*n-1)^2; numtheory[tau](d/igcd(n, d)) - n end: seq(a(n), n = 1..31);
  • Mathematica
    Table[DivisorSigma[0, (2*n - 1)!!^2/GCD[(2*n - 1)!!^2, n]] - n, {n, 1, 30}] (* Vaclav Kotesovec, Feb 23 2024 *)

Formula

a(n) = tau(d/gcd(d, n)) - n, where d = ((2*n-1)!!)^2 and tau(k) is the number of divisors of the positive integer k.
Showing 1-2 of 2 results.