A126704 Prime numbers that are the sum of three distinct positive sixth powers.
4889, 50753, 51481, 66377, 262937, 308801, 797681, 840241, 1000793, 1046657, 1772291, 2303003, 2986777, 3032641, 3107729, 3365777, 4757609, 4804201, 5135609, 7530329, 7534361, 8061041, 8065073, 10516249, 12394721, 14638753
Offset: 1
Keywords
Examples
4889 = 2^6 + 3^6 + 4^6 = 64 + 729 + 4096. 66377 = 4^6 + 5^6 + 6^6 = 4096 + 15625 + 46656.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^10; # to find all terms <= N A := {}: for a from 1 to iroot(N,6) do for b from 1 to a-1 while a^6 + b^6 < N do for c from (a+b) mod 2 + 1 to b-1 by 2 do r:= a^6 + b^6 + c^6; if r > N then break fi; if isprime(r) then A:= A union {r} fi; od od od: sort(convert(A,list)); # Robert Israel, Dec 15 2015
-
Mathematica
Union[Select[Total/@Subsets[Range[20]^6,{3}],PrimeQ]] (* Harvey P. Dale, Apr 20 2013 *)
-
PARI
{m=16; p=m^6; w=[]; for(i=1,m-2,for(j=i+1, m-1, for(k=j+1, m, if((n=i^6+j^6+k^6)
Extensions
Edited, corrected and extended by Klaus Brockhaus, Feb 16 2007