cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126717 Least odd k such that k*2^n-1 is prime.

Original entry on oeis.org

3, 3, 1, 1, 3, 1, 3, 1, 5, 7, 5, 3, 5, 1, 5, 9, 17, 1, 3, 1, 17, 7, 33, 13, 39, 57, 11, 21, 27, 7, 213, 1, 5, 31, 3, 25, 17, 21, 3, 25, 107, 15, 33, 3, 35, 7, 23, 31, 5, 19, 11, 21, 65, 147, 5, 3, 33, 51, 77, 45, 17, 1, 53, 9, 3, 67, 63, 43, 63, 51, 27, 73, 5, 15, 21, 25, 3, 55, 47, 69
Offset: 0

Views

Author

Bernardo Boncompagni, Feb 13 2007

Keywords

Comments

If a(n)=1 then n is a Mersenne exponent (A000043). - Pierre CAMI, Apr 22 2013
From Pierre CAMI, Apr 03 2017: (Start)
Empirically, as N increases, (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} n) tends to log(2); this is consistent with the prime number theorem as the probability that x*2^n - 1 is prime is ~ 1/(n*log(2)) if n is large enough.
For n=1 to 10000, a(n)/n < 7.5.
a(n)*2^n - 1 and a(n)*2^n + 1 are twin primes for n = 1, 2, 6, 18, 22, 63, 211, 282, 546, 726, 1032, 1156, 1321, 1553, 2821, 4901, 6634, 8335, 8529; corresponding values of a(n) are 3, 1, 3, 3, 33, 9, 9, 165, 297, 213, 177, 1035, 1065, 291, 6075, 2403, 2565, 4737, 3975, 459. (End)

Examples

			a(10)=5 because 5*2^10-1 is prime but 1*2^10-1 and 3*2^10-1 are not.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ !PrimeQ[k*2^n - 1], k += 2]; k]; Table[f@n, {n, 0, 80}] (* Robert G. Wilson v, Feb 20 2007 *)
  • PARI
    a(n) = {my(k=1); while(!isprime(k*2^n - 1), k+=2); k}; \\ Indranil Ghosh, Apr 03 2017
    
  • Python
    from sympy import isprime
    def a(n):
        k=1
        while True:
            if isprime(k*2**n - 1): return k
            k+=2
    print([a(n) for n in range(101)]) # Indranil Ghosh, Apr 03 2017

Formula

a(n) << 19^n by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013
Conjecture: a(n) = O(n log n). - Thomas Ordowski, Oct 15 2014

Extensions

More terms from Robert G. Wilson v, Feb 20 2007