A126765 a(n) = number of L-convex polyominoes inscribed in an (n+1) X (n+1) box.
1, 5, 42, 402, 4070, 42510, 452900, 4891988, 53376966, 586921790, 6493225772, 72192371100, 805935279708, 9028253155628, 101433497725320, 1142504966609512, 12897113121607750, 145870996300613406, 1652690392388658012, 18753389068268792780, 213091273336786301940
Offset: 0
Keywords
References
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..939
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 4*n+1, (12*(4*n-1)*(2*n-1)*(n-1)^2* a(n-1)-4*(n-2)*(2*n-3)*n*(4*n+1)*a(n-2))/((4*n-3)*(2*n-1)*n*(n-1))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jan 23 2023
-
Mathematica
CoefficientList[Series[(1/2)Sqrt[(2+5x-2x^2+(2-x)Sqrt[1-12x+4x^2])/ (1-12x+4x^2)],{x,0,20}],x] (* Harvey P. Dale, Jun 14 2011 *)
Formula
G.f.: (1/2) * sqrt( (2+5*x-2*x^2+(2-x)*sqrt(1-12*x+4*x^2) )/ (1-12*x+4*x^2) ).
a(n) ~ 2^(n-9/4) * (3+2*sqrt(2))^(n+1) / sqrt((1+sqrt(2))*Pi*n). - Vaclav Kotesovec, Feb 16 2015
Comments