cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126775 a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).

Original entry on oeis.org

1, 2, 8, 12, 32, 16, 72, 64, 108, 64, 200, 96, 288, 144, 256, 320, 512, 216, 648, 384, 576, 400, 968, 512, 1200, 576, 1296, 864, 1568, 512, 1800, 1536, 1600, 1024, 2304, 1296, 2592, 1296, 2304, 2048, 3200, 1152, 3528, 2400, 3456, 1936, 4232, 2560, 5292, 2400
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [ EulerPhi(n)*EulerPhi(n)*NumberOfDivisors(n) : n in [1..100] ];
  • Mathematica
    Table[EulerPhi[n]^2 DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Dec 05 2012 *)

Formula

Multiplicative with a(p^e) = (e+1)*(p-1)^2*p^(2*e-2). - Amiram Eldar, Dec 29 2022
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(s-2)^2 * Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Sum_{k=1..n} a(k) ~ f(3) * n^3 * (log(n) + 2*gamma - 1/3 + f'(3)/f(3)) / 3, where
f(3) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264...,
f'(3) = f(3) * Sum_{p prime} 2*(2*p - 1) * log(p) / (p^3 + p^2 - 3*p + 1) = f(3) * 1.6860441157206199528397247528679297282000614932962665074593283751342385...
and gamma is the Euler-Mascheroni constant A001620. (End)