A126791 Binomial matrix applied to A111418.
1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
Offset: 0
Examples
Triangle begins: 1; 4, 1; 17, 7, 1; 75, 39, 10, 1; 339, 202, 70, 13, 1; 1558, 1015, 425, 110, 16, 1; 7247, 5028, 2400, 771, 159, 19, 1; 34016, 24731, 12999, 4872, 1267, 217, 22, 1; ... From _Philippe Deléham_, Nov 07 2011: (Start) Production matrix begins: 4, 1 1, 3, 1 0, 1, 3, 1 0, 0, 1, 3, 1 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Maple
A126791 := proc(n,k) if n=0 and k = 0 then 1 ; elif k <0 or k>n then 0; elif k= 0 then 4*procname(n-1,0)+procname(n-1,1) ; else procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Mar 12 2013 T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n,k),k=1..n),n=1..10); # Peter Luschny, May 13 2016
-
Mathematica
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
Formula
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1).
Sum_{k=0..n} T(n,k) = 5^n = A000351(n).
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x )*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022
Comments