cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A325381 Lexicographically earliest sequence such that a(i) = a(j) => A048250(i) = A048250(j) and A126795(i) = A126795(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 9, 10, 11, 12, 2, 13, 5, 14, 7, 15, 16, 17, 9, 4, 18, 3, 19, 20, 21, 15, 2, 22, 23, 24, 9, 25, 26, 27, 7, 28, 29, 30, 31, 12, 32, 24, 9, 6, 7, 33, 18, 34, 5, 35, 36, 37, 38, 39, 40, 41, 42, 15, 2, 43, 44, 45, 23, 46, 47, 35, 9, 48, 49, 12, 50, 51, 52, 37, 7, 3, 53, 43, 54, 55, 56, 57, 31, 58, 59, 60, 61, 62, 47, 63, 9, 64, 11
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A048250(n), A126795(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A126795(n) = gcd(n,A048250(n));
    v325381 = rgs_transform(vector(up_to,n,[A048250(n),A126795(n)]));
    A325381(n) = v325381[n];

A325382 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A048250(n), A126795(n)] for all other numbers, except f(p) = -(p mod 2) for primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 8, 3, 9, 10, 4, 3, 5, 3, 7, 11, 12, 3, 8, 13, 14, 6, 15, 3, 16, 3, 4, 17, 18, 19, 8, 3, 20, 21, 7, 3, 22, 3, 23, 10, 24, 3, 8, 25, 7, 26, 14, 3, 5, 27, 28, 29, 30, 3, 31, 3, 32, 11, 4, 33, 34, 3, 18, 35, 36, 3, 8, 3, 37, 10, 38, 39, 40, 3, 7, 6, 41, 3, 42, 43, 44, 45, 23, 3, 46, 47, 48, 49, 36, 50, 8, 3, 9, 17, 7, 3, 51, 3, 14
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A126795(n) = gcd(n,A048250(n));
    Aux325382(n) = if(isprime(n),-(n%2),[A048250(n),A126795(n)]);
    v325382 = rgs_transform(vector(up_to,n,Aux325382(n)));
    A325382(n) = v325382[n];

A325385 a(n) = gcd(n-A048250(n), n-A162296(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 5, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 19, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 41, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A048250(n), n-A162296(n)).
a(n) = gcd(A325313(n), A325314(n)).
a(A228058(n)) = A325375(n).

A325313 a(n) = A048250(n) - n, where A048250(n) is the sum of squarefree divisors of n.

Original entry on oeis.org

0, 1, 1, -1, 1, 6, 1, -5, -5, 8, 1, 0, 1, 10, 9, -13, 1, -6, 1, -2, 11, 14, 1, -12, -19, 16, -23, -4, 1, 42, 1, -29, 15, 20, 13, -24, 1, 22, 17, -22, 1, 54, 1, -8, -21, 26, 1, -36, -41, -32, 21, -10, 1, -42, 17, -32, 23, 32, 1, 12, 1, 34, -31, -61, 19, 78, 1, -14, 27, 74, 1, -60, 1, 40, -51, -16, 19, 90, 1, -62, -77, 44, 1, 12, 23, 46
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A048250(n) - n.
a(n) = A325314(n) - A033879(n).
a(A228058(n)) = -A325319(n).

A348929 a(n) = gcd(n, A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 36, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 4, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Differs from similar A126795 for the first time at n=36, where a(36) = 36, while A126795(36) = 12.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348929(n) = gcd(n, A003959(n));

Formula

a(n) = gcd(n, A003959(n)) = gcd(n, A348507(n)) = gcd(A003959(n), A348507(n)).
Showing 1-5 of 5 results.