cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A325975 a(n) = gcd(A325977(n), A325978(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

See comments in A325979 and A325981.

Crossrefs

Programs

Formula

a(n) = gcd(A325977(n), A325978(n)).
a(n) = (1/2)*gcd(A034460(n)+A325313(n), A325814(n)+A325314(n)).

A326057 a(n) = gcd(A003961(n)-2n, A003961(n)-sigma(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 1, 43, 1, 3, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 19, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Terms a(n) larger than 1 and equal to A252748(n) occur at n = 6, 28, 69, 91, 496, ..., see A326134. See also A349753.
Records 1, 3, 43, 45, 2005, 79243, ... occur at n = 1, 6, 28, 360, 496, 8128, ...

Crossrefs

Programs

  • Mathematica
    Array[GCD[#3 - #1, #3 - #2] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 78] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A252748(n) = (A003961(n) - (2*n));
    A286385(n) = (A003961(n) - sigma(n));
    A326057(n) = gcd(A252748(n), A286385(n));

Formula

a(n) = gcd(A252748(n), A286385(n)) = gcd(A003961(n) - 2n, A003961(n) - A000203(n)).
a(n) = gcd(A252748(n), A033879(n)) = gcd(A286385(n), A033879(n)). [Also A033880 can be used] - Antti Karttunen, May 06 2024

A325813 a(n) = gcd(A034448(n)-n, n-A048146(n)), where A034448 and A048146 are respectively the sum of unitary and non-unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 12, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 7, 3, 6, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 12, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 21, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A034460(n), A325814(n)).

A326048 a(n) = gcd(n-A050449(n), A082052(n)-n), where A050449 and A082052 give the sum of divisors of the form 4k+1, and not of that form, respectively.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 6, 1, 1, 2, 10, 1, 1, 1, 3, 1, 1, 1, 18, 2, 1, 1, 22, 1, 1, 2, 1, 27, 1, 12, 30, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 42, 1, 3, 5, 46, 1, 1, 1, 3, 2, 1, 4, 1, 1, 1, 2, 58, 6, 1, 1, 2, 1, 1, 4, 66, 10, 1, 4, 70, 1, 1, 2, 2, 3, 1, 4, 78, 2, 1, 2, 82, 2, 1, 5, 3, 1, 1, 6, 7, 1, 1, 1, 1, 5, 1, 1, 14, 1, 1, 12, 102, 2, 9
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326049(n), A326050(n)) = gcd(n-A050449(n), A082052(n)-n).
a(2n-1) = A326047(2n-1) for all n.

A326046 a(n) = gcd(n-A326039(n), A326040(n)-n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 12, 2, 1, 1, 8, 1, 3, 1, 5, 2, 1, 4, 1, 5, 1, 24, 28, 6, 15, 1, 1, 1, 1, 1, 36, 2, 1, 1, 40, 2, 3, 4, 4, 10, 1, 4, 1, 7, 15, 3, 4, 2, 19, 4, 1, 1, 1, 8, 60, 2, 1, 1, 1, 6, 3, 1, 1, 2, 35, 1, 72, 1, 1, 12, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 4, 8, 27, 5, 8, 29, 2, 7, 60, 48, 1, 1, 1, 100, 6, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326044(n), A326045(n)) = gcd(n-A326039(n), A326040(n)-n).

A326060 a(n) = gcd(n-A035316(n), A285309(n)-n), where A035316 and A285309 give respectively the sums of square and nonsquare divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 1, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 10, 1, 22, 1, 1, 5, 1, 23, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 5, 40, 1, 42, 1, 1, 5, 46, 1, 1, 1, 10, 1, 52, 4, 2, 1, 2, 1, 58, 1, 60, 1, 1, 1, 2, 1, 66, 1, 2, 1, 70, 1, 72, 1, 1, 1, 2, 1, 78, 1, 1, 1, 82, 1, 2, 5, 2, 1, 88, 2, 10, 1, 2, 1, 2, 15, 96, 1, 1, 1, 100, 1, 102, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Below 2^27 there are following numbers k such that a(k) is equal to A326059(k), and quotient A326058(k)/A326059(k) is odd: 6, 28, 496, 1625, 2057, 8128, 33550336, 107452235. The odd terms are factored as: 1625 = 5^3 * 13, 2057 = 11^2 * 17, 107452235 = 5 * 11^2 * 97 * 1831.

Crossrefs

Programs

Formula

a(n) = gcd(A326058(n), A326059(n)) = gcd(n-A035316(n), A285309(n)-n).

A326062 a(1) = gcd((sigma(n)-A032742(n))-n, n-A032742(n)), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 6, 1, 1, 1, 10, 2, 12, 1, 2, 1, 16, 3, 18, 2, 2, 1, 22, 12, 1, 1, 2, 14, 28, 3, 30, 1, 2, 1, 2, 1, 36, 1, 2, 10, 40, 3, 42, 2, 6, 1, 46, 4, 1, 1, 2, 2, 52, 3, 2, 4, 2, 1, 58, 6, 60, 1, 2, 1, 2, 3, 66, 2, 2, 1, 70, 3, 72, 1, 2, 2, 2, 3, 78, 2, 1, 1, 82, 14, 2, 1, 2, 4, 88, 9, 2, 2, 2, 1, 2, 12, 96, 1, 6, 1, 100, 3, 102, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

See comments in A326063 and A326064.

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = gcd(A060681(n), A318505(n)).
a(n) = gcd((A000203(n)-A032742(n))-n, n-A032742(n)).

A326056 a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Comments

Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...

Crossrefs

Programs

Formula

a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).

A326129 a(n) = gcd(A326127(n), A326128(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 1, 12, 4, 6, 1, 16, 1, 18, 1, 10, 8, 22, 6, 1, 10, 2, 21, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 1, 4, 20, 46, 1, 1, 1, 30, 3, 52, 12, 38, 2, 34, 26, 58, 3, 60, 28, 2, 1, 46, 12, 66, 1, 42, 4, 70, 1, 72, 34, 2, 3, 58, 12, 78, 1, 1, 38, 82, 7, 62, 40, 54, 2, 88, 2, 70, 1, 58, 44, 70, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Question: Are there any other numbers than those in A000396 that satisfy a(k) = A326128(k)?
See also comments in A336641, where all such k should reside. - Antti Karttunen, Jul 29 2020

Crossrefs

Programs

Formula

a(n) = n - A336645(n). - Antti Karttunen, Jul 29 2020

A326144 a(n) = gcd(A066503(n), A326143(n)) = gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 6, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 2, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 2, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88, 6, 70, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A066503(n), A326143(n)) = gcd(n-A007947(n), A000203(n)-A007947(n)-n).
Showing 1-10 of 17 results. Next