cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A318646 The least Chernick's "universal form" Carmichael number with n prime factors.

Original entry on oeis.org

1729, 63973, 26641259752490421121, 1457836374916028334162241, 24541683183872873851606952966798288052977151461406721, 53487697914261966820654105730041031613370337776541835775672321, 58571442634534443082821160508299574798027946748324125518533225605795841
Offset: 3

Views

Author

Amiram Eldar, Aug 31 2018

Keywords

Comments

Chernick proved that U(k, m) = (6m + 1)*(12m + 1)*Product_{i = 1..k-2} (9*(2^i)m + 1), for k >= 3 and m >= 1 is a Carmichael number, if all the factors are primes and, for k >= 4, 2^(k-4) divides m. He called U(k, m) "universal forms". This sequence gives a(k) = U(k, m) with the least value of m. The least values of m for k = 3, 4, ... are 1, 1, 380, 380, 780320, 950560, 950560, 3208386195840, 31023586121600, ...

Examples

			For k=3, m = 1, a(3) = U(3, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1) = 1729.
For k=4, m = 1, a(4) = U(4, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1)*(36*1 + 1) = 63973.
For k=5, m = 380, a(5) = U(5, 1) = (6*380 + 1)*(12*380 + 1)*(18*380 + 1)*(36*380 + 1)*(72*380 + 1) =  26641259752490421121.
		

Crossrefs

Cf. A002997, A033502 (3 prime factors), A206024 (4 prime factors), A206349 (5 prime factors), A126797.

Programs

  • Mathematica
    fc[k_] := If[k < 4, 1, 2^(k - 4)]; a={};Do[v = Join[{6, 12}, 2^Range[k-2]*9];
    w = fc[k]; x = v*w; m = 1; While[! AllTrue[x*m + 1, PrimeQ], m++]; c=Times @@ (x*m + 1);AppendTo[a,c], {k, 3, 9}]; a

A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.

Original entry on oeis.org

95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (72*m + 1) * (576*m + 1) * (648*m + 1) * (1296*m + 1) * (2592*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{5,5}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 698669495582067436250881, 50411423376758357271937215361, 57292035175893741987253427965441, ...

Examples

			95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
  • PARI
    is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);

A372189 Number of terms of A372186 that do not exceed 10^n.

Original entry on oeis.org

0, 0, 2, 17, 87, 487, 2959, 18960, 126997, 878559, 6263608, 45854245
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Crossrefs

A372190 Number of terms of A372188 that do not exceed 10^n.

Original entry on oeis.org

1, 2, 10, 33, 149, 824, 5116, 32077, 213075, 1463213, 10397977, 75903023
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Crossrefs

Showing 1-4 of 4 results.