A126809 Minimum number of terms required in the Gregory-Leibniz series, i.e., 4(1 - 1/3 + 1/5 - 1/7 + 1/9 - ...), to obtain a value of Pi correct to n decimal digits.
3, 19, 119, 1688, 10794, 136121, 1530012, 18660270, 156001209, 1695509436, 11136696006, 102111268282, 1260654956982, 10725187563686, 147895359776637, 1313133218365935, 16250291773636035, 118166387818704586, 1860961545617561679, 15963377896404315146
Offset: 1
Examples
E.g., a(2)=19 because if 4 is multiplied by the sum of the first 19 terms of the alternating series, then the result begins with 3.1 (the first two decimal digits of Pi) for the first time. At n=3, we want the smallest m such that the partial sum S(m) = 4(1 - 1/3 + 1/5 - 1/7 + ... - (-1)^m/(2m-1)) is in the half-open interval [3.14,3.15). S(m) < Pi iff m is even, so for even m, setting Pi - (-1)^m/m = Pi - 1/m equal to 3.14 gives m=627.882..., and rounding up to the next even number gives 628. The other end of the interval, however, being farther from Pi, will be reached at a smaller value of m; for odd m, setting Pi - (-1)^m/m = Pi + 1/m equal to 3.15 gives m=118.943..., and rounding up to the next odd number gives 119. As it turns out, m=117 is the last odd number to fail (giving a sum of 3.150139...); m=119 succeeds (sum=3.149995...). No even number less than 628 yields a sum in the interval, so a(3)=119. - _Jon E. Schoenfield_, Nov 11 2016
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A000364.
For a similar problem involving the convergence of a non-alternating series, see A274982. - Jon E. Schoenfield, Nov 11 2016
Formula
From Jon E. Schoenfield, Nov 11 2016: (Start)
The following has been verified to give the correct value of a(n) for all n from a(2)=19 through at least a(10000) = 11673...08624 (a 10000-digit number), and very likely for all n beyond 10000 as well (since the discarded terms 1/(4m^3), 5/(16m^5), etc. rapidly become small, so the simple approximation S(m) = Pi - (-1)^m/m becomes increasingly accurate):
Let x = Pi * 10^(n-1). If x - floor(x) < 1/2, then a(n) = 1 + 2*floor((1/(ceiling(x)/10^(n-1) - Pi) + 1)/2); otherwise, a(n) = 2*ceiling((1/2)/(Pi - floor(x)/10^(n-1))). (End)
Extensions
a(6)-a(8) from Mike Keith, Mar 18 2007
Edited by Jon E. Schoenfield, Nov 11 2016
Comments