A126813 Ramanujan numbers (A000594) read mod 8.
1, 0, 4, 0, 6, 0, 0, 0, 5, 0, 4, 0, 6, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 4, 0, 6, 0, 0, 0, 1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 1, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 6, 0, 0, 0, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- R. P. Bambah, S. Chowla and H. Gupta, A congruence property of Ramanujan’s function tau(n), Bull. Amer. Math. Soc. 53 (1947), 766-767.
- H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
Programs
-
Mathematica
Mod[RamanujanTau@ #, 8] &@ Range@ 120 (* Michael De Vlieger, Apr 25 2016 *)
-
PARI
A126813(n) = (ramanujantau(n)%8); \\ Antti Karttunen, Nov 26 2017
-
PARI
a(n)=my(e=valuation(n,2)); ramanujantau(2^e)*sigma(n>>e)%8 \\ Charles R Greathouse IV, Sep 09 2022
Formula
For all odd n, a(n) = sigma(n) mod 8 = A105827(n). - Michel Marcus, Apr 25 2016