cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A102749 Numbers k such that the largest prime-power dividing k is not a power of the largest prime dividing k.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 63, 80, 90, 96, 112, 120, 126, 135, 144, 160, 168, 175, 176, 180, 189, 192, 208, 224, 240, 252, 270, 275, 280, 288, 297, 315, 320, 325, 336, 350, 351, 352, 360, 378, 384, 405, 416, 425, 448, 459, 475, 480, 504, 513, 525, 528, 539, 540
Offset: 1

Views

Author

Leroy Quet, Feb 09 2005

Keywords

Comments

Does this sequence have finite density? - Franklin T. Adams-Watters, Aug 29 2006
The numbers of terms not exceeding 10^k, for k=1,2,..., are 0, 10, 97, 706, 4779, 31249, 203799, 1322874, 8622492, 56559400, ... Apparently this sequence has an asymptotic density 0. - Amiram Eldar, Mar 20 2021

Examples

			45 is a term because 45 = 3^2*5 and 9 (the largest prime-power dividing 45) is not a power of 5 (the largest prime dividing 45).
144 is a term because its largest prime divisor is 3, but the largest prime power divisor, 16, is not a power of 3.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{p = Power @@@ FactorInteger[n]},Last[p] != Max[p]];Select[Range[540], fQ] (* Ray Chandler, May 11 2007 *)

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2006

A140831 Numbers in whose canonical prime factorization the powers of the primes do not form an increasing sequence.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 60, 63, 80, 84, 90, 96, 112, 120, 126, 132, 135, 144, 156, 160, 168, 175, 176, 180, 189, 192, 204, 208, 224, 228, 240, 252, 264, 270, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 350, 351, 352, 360, 372, 378, 384, 405
Offset: 1

Views

Author

Leroy Quet, Jul 18 2008

Keywords

Comments

Previous name was: Let p^b(n,p) be the largest power of the prime p that divides n. The integer n is included if the list of p^b(n,p)'s, where each p is a distinct prime divisor of n, arranged by size of each p^b(n,p) is not in the same order as the list of p^b(n,p)'s arranged by size of each prime p.
This sequence contains no squarefree integers.
90 is the smallest integer in this sequence but not in sequence A126855.
The number of terms < 10^n: 0, 12, 151, 1575, 16154, 161630, 1617052, ..., . - Robert G. Wilson v, Aug 31 2008
If k is in the sequence, then all powers of k are in the sequence. - Mike Jones, Jun 16 2022
If k is in the sequence then k*A020639(k)^m is in the sequence for m >= 0. - David A. Corneth, Jun 16 2022
Conjecture: There are infinitely many terms k such that k+1 is also a term. - Mike Jones, Jun 18 2022

Examples

			The prime factorization of 90 is, when arranged by size of the distinct primes, 2^1 * 3^2 * 5^1. Since 3^2 is > 5^1, even though 5 > 3, 90 is in the sequence.
		

Crossrefs

Complement of A383397.

Programs

  • Mathematica
    fQ[n_] := Block[{f = First@# ^ Last@# & /@ FactorInteger@n}, f != Sort@f]; Select[ Range@ 407, fQ@# &] (* Robert G. Wilson v, Aug 31 2008 *)
  • PARI
    is(n) = { my(f = factor(n)); for(i = 1, #f~-1, if(f[i,1]^f[i,2] > f[i+1,1]^f[i+1,2], return(1) ) ); 0 } \\ David A. Corneth, Jun 16 2022

Extensions

More terms from Robert G. Wilson v, Aug 31 2008
Simpler name from Mike Jones, Jun 15 2022
Showing 1-2 of 2 results.