cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126858 Coefficients in quasimodular form F_2(q) of level 1 and weight 6.

Original entry on oeis.org

0, 0, 1, 8, 30, 80, 180, 336, 620, 960, 1590, 2200, 3416, 4368, 6440, 7920, 11160, 13056, 18333, 20520, 27860, 31360, 41052, 44528, 59760, 62400, 80990, 87120, 109872, 113680, 147960, 148800, 188976, 196416, 240210, 243040, 311910, 303696, 376580, 385840
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 2007

Keywords

Comments

This is also (5*E_2^3 - 3*E_2*E_4 - 2*E_6)/51840, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively. - N. J. A. Sloane, Feb 06 2017
This is also ((q*(d/dq)E_4)/240 + q*(d/dq)(q*(d/dq)E_2)/24)/6, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively. - Seiichi Manyama, Feb 08 2017

Examples

			F_2(q) = q^2 + 8*q^3 + 30*q^4 + 80*q^5 + 180*q^6 + 336*q^7 + 620*q^8 + 960*q^9 + 1590*q^10 + 2200*q^11 + ...
		

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145094 (q*(d/dq)E_4), A281372, A282097, A282154 (-q*(d/dq)(q*(d/dq)E_2)).

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    series((5*e2^3-3*e2*e4-2*e6)/51840,q,M+1);
    seriestolist(%); # from N. J. A. Sloane, Feb 06 2017
  • Mathematica
    terms = 40; Ei[n_] = 1 - (2 n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, 1, terms}]; S = 5 Ei[2]^3 - 3 Ei[2] Ei[4] - 2 Ei[6]; CoefficientList[S + O[x]^terms, x]/SeriesCoefficient[S, {x, 0, 2}] (* Jean-François Alcover, Feb 28 2018 *)
  • PARI
    {a(n) = local(L1, L2, L3); if( n<0, 0, L1 = 1 - 24 * sum( k = 1, n, sigma(k) * x^k, x * O(x^n)); L2 = x * L1'; L3 = x * L2'; polcoeff( (L1 * L2 - L3) / 720, n))} /* Michael Somos, Jan 08 2012 */

Formula

F_2(q) = (5*E(2)^3-3*E(2)*E(4)-2*E(6))/51840 where E(k) is the normalized Eisenstein series of weight k (cf. A006352, etc.).
Expansion of (L1 * L2 - L3) / 720 where L1 = E2 (A006352), L2 = q * dL1/dq, L3 = q * dL2/dq in powers of q where E2 is an Eisenstein series. - Michael Somos, Jan 08 2012
a(n) = (A145094(n)/240 - A282154(n)/24)/6 = (A281372(n) - A282097(n))/6. - Seiichi Manyama, Feb 08 2017