A126890 Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.
0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0
Examples
From _Philippe Deléham_, Oct 03 2011: (Start) Triangle begins: 0; 1, 2; 3, 5, 7; 6, 9, 12, 15; 10, 14, 18, 22, 26; 15, 20, 25, 30, 35, 40; 21, 27, 33, 39, 45, 51, 57; 28, 35, 42, 49, 56, 63, 70, 77; (End)
References
- Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Émile Fourrey, Les nombres abstraits, Récreations arithmétiques, 1899 and later, Vuibert, Paris, page 86-87. Triangle without right diagonal.
- Adrien-Marie Legendre, Théorie des nombres, tome 2, quatrième partie, p.131, troisième édition, Paris, 1830.
Crossrefs
Cf. A110449.
Programs
-
Haskell
a126890 n k = a126890_tabl !! n !! k a126890_row n = a126890_tabl !! n a126890_tabl = map fst $ iterate (\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0) -- Reinhard Zumkeller, Nov 10 2013
-
Mathematica
Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)
Formula
T(n,k) = T(n,k-1) + n, for k <= n. - Philippe Deléham, Oct 03 2011
Comments