cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126890 Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 30 2006

Keywords

Comments

T(n,k) + T(n,n-k) = A014105(n);
row sums give A059270; Sum_{k=0..n-1} T(n,k) = A000578(n);
central terms give A007742; T(2*n+1,n) = A016754(n);
T(n,0) = A000217(n);
T(n,1) = A000096(n) for n > 0;
T(n,2) = A055998(n) for n > 1;
T(n,3) = A055999(n) for n > 2;
T(n,4) = A056000(n) for n > 3;
T(n,5) = A056115(n) for n > 4;
T(n,6) = A056119(n) for n > 5;
T(n,7) = A056121(n) for n > 6;
T(n,8) = A056126(n) for n > 7;
T(n,10) = A101859(n-1) for n > 9;
T(n,n-3) = A095794(n-1) for n > 2;
T(n,n-2) = A045943(n-1) for n > 1;
T(n,n-1) = A000326(n) for n > 0;
T(n,n) = A005449(n).

Examples

			From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
   0;
   1,  2;
   3,  5,  7;
   6,  9, 12, 15;
  10, 14, 18, 22, 26;
  15, 20, 25, 30, 35, 40;
  21, 27, 33, 39, 45, 51, 57;
  28, 35, 42, 49, 56, 63, 70, 77; (End)
		

References

  • Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.

Crossrefs

Cf. A110449.

Programs

  • Haskell
    a126890 n k = a126890_tabl !! n !! k
    a126890_row n = a126890_tabl !! n
    a126890_tabl = map fst $ iterate
       (\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)

Formula

T(n,k) = T(n,k-1) + n, for k <= n. - Philippe Deléham, Oct 03 2011