A126908 Numbers k such that 1 + k^2 + k^4 + k^6 + k^7 is prime.
1, 4, 13, 15, 24, 30, 37, 40, 55, 93, 138, 139, 148, 153, 154, 159, 160, 165, 184, 195, 204, 223, 258, 303, 355, 360, 373, 459, 472, 475, 510, 519, 534, 577, 594, 607, 615, 627, 658, 672, 688, 723, 735, 739, 795, 805, 807, 817, 819, 820, 847, 874, 879, 904
Offset: 1
Keywords
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^7], AppendTo[a, n]], {n, 1, 1400}]; a Select[Range[1000],PrimeQ[1+#^2+#^4+#^6+#^7]&] (* Harvey P. Dale, Jan 15 2016 *)
-
PARI
is(n)=isprime(1+n^2+n^4+n^6+n^7) \\ Charles R Greathouse IV, Feb 17 2017