A126913 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^17 is prime.
2, 22, 38, 102, 128, 130, 172, 232, 250, 292, 378, 404, 424, 458, 472, 490, 510, 600, 608, 702, 774, 802, 868, 888, 938, 950, 1010, 1140, 1204, 1220, 1274, 1294, 1328, 1372, 1394, 1398, 1402, 1412, 1418, 1502, 1564, 1580, 1602, 1670, 1692, 1792, 1800
Offset: 1
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^17], AppendTo[a, n]], {n, 1, 1400}]; a Select[Range[2000],PrimeQ[Total[#^{0,2,4,6,8,10,12,14,16,17}]]&] (* Harvey P. Dale, Jan 07 2023 *)
-
PARI
is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^17) \\ Charles R Greathouse IV, Jun 13 2017