cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126963 Numerators of sequence defined by f(0)=1, f(1)=5/4; f(n) = ( (6*n-1)*f(n-1) - (2*n-1)*f(n-2) )/(4n).

Original entry on oeis.org

1, 5, 43, 177, 2867, 11531, 92479, 370345, 11857475, 47442055, 379582629, 1518418695, 24295375159, 97182800711, 777467420263, 3109879375897, 199032580597603, 796130905791967, 6369049515119561, 25476202478636219, 407619274119811709, 1630477163761481141
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2007

Keywords

Crossrefs

Denominators are in A088802.

Programs

  • GAP
    List([0..25], n-> NumeratorRat( Sum([0..n], k-> Binomial(2*k,k)/8^k) ));  # G. C. Greubel, Jan 29 2020
  • Magma
    [Numerator( &+[Binomial(2*k, k)/8^k: k in [0..n]] ): n in [0..25]]; // G. C. Greubel, Jan 29 2020
    
  • Maple
    seq( numer( add(binomial(2*k, k)/8^k, k=0..n) ), n=0..25); # G. C. Greubel, Jan 29 2020
  • Mathematica
    a[n_] := Sqrt[2](1-(Gamma[1/2+n] Hypergeometric2F1[n,1/2+n,1+n,-1])/(Sqrt[Pi] Gamma[1+n])); Table[Numerator[FullSimplify[a[n]]], {n,20}] (* Gerry Martens, Aug 09 2015 *)
    f[n_]:= If[n==0, 1, If[n==1, 5/4, ((6*n-1)*f[n-1]-(2*n-1)*f[n-2])/(4*n)]];
    Table[Numerator[f[n]], {n, 0, 25}] (* G. C. Greubel, Jan 29 2020 *)
  • PARI
    A126963(n)=numerator(sum(k=0,n,binomial(-1/2,k)/(-2)^k)) \\ f(n)=if(n>1,((6*n-1)*f(n-1)-(2*n-1)*f(n-2))/(4*n),(5/4)^n) yields the same results. - M. F. Hasler, Aug 11 2015
    
  • Sage
    [numerator( sum(binomial(2*k, k)/8^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Jan 29 2020
    

Formula

f(n) = Sum_{k=0..n} binomial(-1/2,k)*(-1/2)^k.
f(n) -> sqrt(2) as n -> oo.
G.f.: (sqrt(-x)*arccsc(1-x)/sqrt(2)-(Pi*i*sqrt(x))/sqrt(2)^3)/x. - Vladimir Kruchinin, Oct 10 2012
a(n) = numerator( Sum_{k=0..n} binomial(2*k, k)/8^k ). - G. C. Greubel, Jan 29 2020