A127013 Triangle read by rows: row reversal of A126988.
1, 1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 0, 5, 1, 0, 0, 2, 3, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 2, 0, 4, 8, 1, 0, 0, 0, 0, 0, 3, 0, 9, 1, 0, 0, 0, 0, 2, 0, 0, 5, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 2, 0, 3, 4, 6, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 2; 1, 0, 3; 1, 0, 2, 4; 1, 0, 0, 0, 5; 1, 0, 0, 2, 3, 6; 1, 0, 0, 0, 0, 0, 7; 1, 0, 0, 0, 2, 0, 4, 8; 1, 0, 0, 0, 0, 0, 3, 0, 9; 1, 0, 0, 0, 0, 2, 0, 0, 5, 10; Row 10 = (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), reversal of 10th row of A126988.
References
- David Wells, "Prime Numbers, The Most Mysterious Figures in Math", John Wiley & Sons, 2005, Appendix.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..7875
Programs
-
Haskell
a127013 n k = a127013_tabl !! (n-1) !! (k-1) a127013_row n = a127013_tabl !! (n-1) a127013_tabl = map reverse a126988_tabl -- Reinhard Zumkeller, Jan 20 2014
-
Magma
[[(n mod (n-k+1)) eq 0 select n/(n-k+1) else 0: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
-
Mathematica
T[n_,m_]:= If[Mod[n, m]==0, n/m, 0]; Table[T[n,n-m+1], {n, 1, 12}, {m, 1, n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
-
PARI
{T(n, k) = if(n%k==0, n/k, 0)}; for(n=1,12, for(k=1,n, print1(T(n,n-k+1), ", "))) \\ G. C. Greubel, Jun 03 2019
-
Sage
def T(n, k): if (n%k==0): return n/k else: return 0 [[T(n, n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019
Extensions
T(10,10) fixed by Reinhard Zumkeller, Jan 20 2014
More terms added by G. C. Greubel, Jun 03 2019
Comments