cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127022 Let f(k) = exp(Pi*sqrt(k)); sequence gives numbers k such that ceiling(f(k)) - f(k) < 1/10^3.

Original entry on oeis.org

25, 37, 43, 58, 67, 74, 163, 232, 522, 719, 1169, 1245, 1467, 1850, 1872, 2086, 3368, 4075, 5773, 7685, 7802, 7942, 8325, 9728, 10032, 11682, 12158, 13574, 17908, 18505, 19183, 19396, 20039, 20244, 20584, 22241, 23773, 23778, 23834, 25004, 27573, 28071, 32497
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(500)); R:= RealField(); [n: n in [1..50000] | Ceiling(Exp(Pi(R)*Sqrt(n))) - Exp(Pi(R)*Sqrt(n)) lt 1/1000]; // G. C. Greubel, Jun 02 2019
  • Mathematica
    a = {}; Do[If[(1 - (Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]]) > 0) && (1 - ( Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]])< 10^(-3)), AppendTo[a, x]], {x, 1, 1000}]; a
    Reap[Block[{$MaxExtraPrecision = Infinity}, Do[If[N[FractionalPart[Exp[Pi Sqrt[n]]], 8] > .999, Sow[n]], {n, 2000}]]][[-1, 1]] (* JungHwan Min, Mar 20 2016 *)
  • PARI
    default(realprecision, 500); c(n) = exp(Pi*sqrt(n));
    for(n=1, 50000, if( ceil(c(n)) - c(n) <1/1000, print1(n", "))) \\ G. C. Greubel, Jun 02 2019
    

Extensions

a(16)-a(43) added (from JungHwan Min's b-file) by Jon E. Schoenfield, Sep 04 2017