A127042 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square.
2, 3, 5, 7, 17, 19, 29, 31, 37, 41, 97, 127, 131, 211, 223, 227, 229, 233, 239, 241, 439, 443, 449, 457, 461, 463, 727, 733, 739, 743, 751, 757, 761, 769, 773, 863, 877, 881, 883, 887, 967, 971, 977, 983, 991, 997, 1009, 1013, 1187, 1193, 1201, 1901, 1907, 1913, 1931, 1933
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], AppendTo[a, Prime[x]]], {x, 1, 50}]; a
Extensions
More terms from Franklin T. Adams-Watters, Jan 21 2012