cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127058 Triangle, read by rows, defined by: T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) for n > k >= 0, with T(n,n) = n+1.

Original entry on oeis.org

1, 2, 2, 10, 6, 3, 74, 42, 12, 4, 706, 414, 108, 20, 5, 8162, 5058, 1332, 220, 30, 6, 110410, 72486, 19908, 3260, 390, 42, 7, 1708394, 1182762, 342252, 57700, 6750, 630, 56, 8, 29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9, 576037442
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Comments

Column 0 is A000698, the number of shellings of an n-cube, divided by 2^n n!.
Column 1 is A115974, the number of Feynman diagrams of the proper self-energy at perturbative order n.

Examples

			Other recurrences exist, as shown by:
column 0 = A000698: T(n,0) = (2n+1)!! - Sum_{k=1..n} (2k-1)!!*T(n-k,0);
column 1 = A115974: T(n,1) = T(n+1,0) - Sum_{k=0..n-1} T(k,1)*T(n-k,0).
Illustrate the recurrence:
T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) (n > k >= 0)
at column k=1:
T(2,1) = T(1,1)*T(2,2) = 2*3 = 6;
T(3,1) = T(1,1)*T(3,2) + T(2,1)*T(2,2) = 2*12 + 6*3 = 42;
T(4,1) = T(1,1)*T(4,2) + T(2,1)*T(3,2) + T(3,1)*T(2,2) = 2*108 + 6*12 + 42*3 = 414;
at column k=2:
T(3,2) = T(2,2)*T(3,3) = 3*4 = 12;
T(4,2) = T(2,2)*T(4,3) + T(3,2)*T(3,3) = 3*20 + 12*4 = 108;
T(5,2) = T(2,2)*T(5,3) + T(3,2)*T(4,3) + T(4,2)*T(3,3) = 3*220 + 12*20 + 108*4 = 1332.
Triangle begins:
         1;
         2,        2;
        10,        6,       3;
        74,       42,      12,       4;
       706,      414,     108,      20,      5;
      8162,     5058,    1332,     220,     30,     6;
    110410,    72486,   19908,    3260,    390,    42,   7;
   1708394,  1182762,  342252,   57700,   6750,   630,  56,  8;
  29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9; ...
		

Crossrefs

Columns: A000698, A115974, A127059.
Row sums: A127060.
Cf. A001147 ((2n-1)!!).

Programs

  • Mathematica
    T[n_,k_]:= If[k==n, n+1, Sum[T[j+k,k]*T[n-j,k+1], {j,0,n-k-1}]];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
  • PARI
    {T(n,k)=if(n==k,n+1,sum(j=0,n-k-1,T(j+k,k)*T(n-j,k+1)))}
    
  • Sage
    def T(n, k):
        if (k==n): return n+1
        else: return sum(T(j+k,k)*T(n-j,k+1) for j in (0..n-k-1))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 03 2019