A127071 Quotients (3^p - 2^p - 1)/p, where p = prime(n).
2, 6, 42, 294, 15918, 122010, 7588770, 61144062, 4092816966, 2366546223930, 19924878993558, 12169831579784970, 889585223857256850, 7633882758103350126, 565719451451489679414, 365721616201373974378410
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..315
Programs
-
Magma
p:=NthPrime; [(3^p(n) -2^p(n) -1)/p(n): n in [1..20]]; // G. C. Greubel, Aug 11 2019
-
Maple
seq((3^ithprime(n) -2^ithprime(n) -1)/(ithprime(n)), n=1..20); # G. C. Greubel, Aug 11 2019
-
Mathematica
Table[(3^Prime[n]-2^Prime[n]-1)/Prime[n],{n,1,20}]
-
PARI
vector(20, n, p=prime; (3^p(n) - 2^p(n) -1)/p(n) ) \\ G. C. Greubel, Aug 11 2019
-
Sage
p=nth_prime; [(3^p(n) -2^p(n) -1)/p(n) for n in (1..20)] # G. C. Greubel, Aug 11 2019
Formula
a(n) = (3^prime(n) - 2^prime(n) - 1)/prime(n).
Comments