A127072 Numbers k that divide 3^k - 2^k - 1.
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 27, 29, 31, 32, 37, 41, 43, 45, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..250] | ((3^n - 2^n - 1) mod n) eq 0]; // G. C. Greubel, Aug 12 2019
-
Mathematica
Select[Range[1000],IntegerQ[(3^#-2^#-1)/# ]&]
-
PARI
is(n)=Mod(3,n)^n-Mod(2,n)^n==1 \\ Charles R Greathouse IV, Nov 04 2016
-
Sage
[n for n in (1..250) if mod(3^n-2^n-1, n)==0 ] # G. C. Greubel, Jan 30 2020
Comments