A127082 Triangle, read by rows, where the g.f. of column k, C_k(x), is defined by the recursion: C_k(x) = ( 1 + Sum_{n>=1} x^n*C_{n-1+k}(x) )^(k+1).
1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 16, 28, 15, 4, 1, 64, 127, 85, 26, 5, 1, 308, 650, 531, 192, 40, 6, 1, 1728, 3737, 3600, 1551, 365, 57, 7, 1, 11046, 23996, 26266, 13416, 3635, 620, 77, 8, 1, 79065, 170866, 205353, 122770, 38556, 7356, 973, 100, 9, 1
Offset: 0
Examples
C_k = [ 1 + x*C_k + x^2*C_{k+1} + x^3*C_{k+2} +... ]^(k+1). The columns are generated by working backwards: C_3 = [ 1 + x*C_3 + x^2*C_4 + x^3*C_5 + x^4*C_6 +... ]^4; C_2 = [ 1 + x*C_2 + x^2*C_3 + x^3*C_4 + x^4*C_5 +... ]^3; C_1 = [ 1 + x*C_1 + x^2*C_2 + x^3*C_3 + x^4*C_4 +... ]^2; C_0 = [ 1 + x*C_0 + x^2*C_1 + x^3*C_2 + x^4*C_3 +... ]^1; thus the row sums equal column 0 shift left. The triangle begins: 1; 1, 1; 2, 2, 1; 5, 7, 3, 1; 16, 28, 15, 4, 1; 64, 127, 85, 26, 5, 1; 308, 650, 531, 192, 40, 6, 1; 1728, 3737, 3600, 1551, 365, 57, 7, 1; 11046, 23996, 26266, 13416, 3635, 620, 77, 8, 1; 79065, 170866, 205353, 122770, 38556, 7356, 973, 100, 9, 1; 625049, 1338578, 1716582, 1180496, 429515, 92730, 13412, 1440, 126, 10, 1;
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==n, 1, Coefficient[(1 + x*Sum[x^(r-k)*Sum[T[r, c], {c, k, r}], {r, k, n-1}] + x^(n+1))^(k+1), x, n-k]]; Table[T[n, k], {n,0,12}, {k, 0,n}]//Flatten (* G. C. Greubel, Jan 30 2020 *)
-
PARI
{T(n,k)=if(n==k,1,polcoeff( (1 + x*sum(r=k,n-1,x^(r-k)*sum(c=k,r, T(r,c) ))+x*O(x^n))^(k+1),n-k))}
Comments