cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127082 Triangle, read by rows, where the g.f. of column k, C_k(x), is defined by the recursion: C_k(x) = ( 1 + Sum_{n>=1} x^n*C_{n-1+k}(x) )^(k+1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 16, 28, 15, 4, 1, 64, 127, 85, 26, 5, 1, 308, 650, 531, 192, 40, 6, 1, 1728, 3737, 3600, 1551, 365, 57, 7, 1, 11046, 23996, 26266, 13416, 3635, 620, 77, 8, 1, 79065, 170866, 205353, 122770, 38556, 7356, 973, 100, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Comments

This is a variant of triangle A124328.

Examples

			C_k = [ 1 + x*C_k + x^2*C_{k+1} + x^3*C_{k+2} +... ]^(k+1).
The columns are generated by working backwards:
C_3 = [ 1 + x*C_3 + x^2*C_4 + x^3*C_5 + x^4*C_6 +... ]^4;
C_2 = [ 1 + x*C_2 + x^2*C_3 + x^3*C_4 + x^4*C_5 +... ]^3;
C_1 = [ 1 + x*C_1 + x^2*C_2 + x^3*C_3 + x^4*C_4 +... ]^2;
C_0 = [ 1 + x*C_0 + x^2*C_1 + x^3*C_2 + x^4*C_3 +... ]^1;
thus the row sums equal column 0 shift left.
The triangle begins:
       1;
       1,       1;
       2,       2,       1;
       5,       7,       3,       1;
      16,      28,      15,       4,      1;
      64,     127,      85,      26,      5,     1;
     308,     650,     531,     192,     40,     6,     1;
    1728,    3737,    3600,    1551,    365,    57,     7,    1;
   11046,   23996,   26266,   13416,   3635,   620,    77,    8,   1;
   79065,  170866,  205353,  122770,  38556,  7356,   973,  100,   9,  1;
  625049, 1338578, 1716582, 1180496, 429515, 92730, 13412, 1440, 126, 10, 1;
		

Crossrefs

Cf. variant: A124328;
Columns: A127083, A127084, A127085, A127086, A127090 (central terms).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, 1, Coefficient[(1 + x*Sum[x^(r-k)*Sum[T[r, c], {c, k, r}], {r, k, n-1}] + x^(n+1))^(k+1), x, n-k]]; Table[T[n, k], {n,0,12}, {k, 0,n}]//Flatten (* G. C. Greubel, Jan 30 2020 *)
  • PARI
    {T(n,k)=if(n==k,1,polcoeff( (1 + x*sum(r=k,n-1,x^(r-k)*sum(c=k,r, T(r,c) ))+x*O(x^n))^(k+1),n-k))}