A127126 Triangle, read by rows, where the g.f. of column k, C_k(x), is defined by the recurrence: C_k(x) = [ 1 + Sum_{n>=k+1} C_n(x)*x^(n-k) ]^(k+1) for k>=0.
1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 77, 54, 18, 4, 1, 587, 412, 139, 30, 5, 1, 5484, 3834, 1314, 284, 45, 6, 1, 60582, 42131, 14658, 3217, 505, 63, 7, 1, 771261, 533558, 188012, 42100, 6680, 818, 84, 8, 1, 11102828, 7645065, 2721462, 621936, 100621, 12387, 1239, 108, 9, 1
Offset: 0
Examples
C_k = [ 1 + x*C_{k+1} + x^2*C_{k+2} + x^3*C_{k+3} +... ]^(k+1). The columns are generated by working backwards: C_3 = [ 1 + x*C_4 + x^2*C_5 + x^3*C_6 + x^4*C_7 +... ]^4; C_2 = [ 1 + x*C_3 + x^2*C_4 + x^3*C_5 + x^4*C_6 +... ]^3; C_1 = [ 1 + x*C_2 + x^2*C_3 + x^3*C_4 + x^4*C_5 +... ]^2; C_0 = [ 1 + x*C_1 + x^2*C_2 + x^3*C_3 + x^4*C_4 +... ]^1. The triangle begins: 1; 1, 1; 3, 2, 1; 13, 9, 3, 1; 77, 54, 18, 4, 1; 587, 412, 139, 30, 5, 1; 5484, 3834, 1314, 284, 45, 6, 1; 60582, 42131, 14658, 3217, 505, 63, 7, 1; 771261, 533558, 188012, 42100, 6680, 818, 84, 8, 1; 11102828, 7645065, 2721462, 621936, 100621, 12387, 1239, 108, 9, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==n, 1, Coefficient[(1 + x*Sum[x^(r-k-1)*Sum[T[r, c], {c,k+1,r}], {r,k+1,n}] +x^(n+1))^(k+1), x, n-k]]; Table[T[n, k], {n,0,12}, {k, 0,n}]//Flatten (* G. C. Greubel, Jan 27 2020 *)
-
PARI
{T(n,k) = if(n==k,1,polcoeff( (1 + x*sum(r=k+1,n,x^(r-k-1)*sum(c=k+1,r, T(r,c))) +x*O(x^n))^(k+1),n-k))}
Comments