cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127080 Infinite square array read by antidiagonals: Q(m, 0) = 1, Q(m, 1) = 1; Q(m, 2k) = (m - 2k + 1)*Q(m+1, 2k-1) - (2k-1)*Q(m+2,2k-2), m*Q(m, 2k+1) = (m - 2k)*Q(m+1, 2k) - 2k(m+1)*Q(m+2, 2k-1).

Original entry on oeis.org

1, 1, 1, 1, 1, -2, 1, 1, -1, -5, 1, 1, 0, -4, 12, 1, 1, 1, -3, 3, 43, 1, 1, 2, -2, -4, 28, -120, 1, 1, 3, -1, -9, 15, -15, -531, 1, 1, 4, 0, -12, 4, 48, -288, 1680, 1, 1, 5, 1, -13, -5, 75, -105, 105, 8601, 1, 1, 6, 2, -12, -12, 72, 24, -624, 3984, -30240, 1, 1, 7, 3, -9, -17, 45, 105, -735, 945, -945, -172965
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

Comments

Comment from N. J. A. Sloane, Jan 29 2020: (Start)
It looks like there was a missing 2 in the definition, which I have now corrected. The old definition was:
(Wrong!) Infinite square array read by antidiagonals: Q(m, 0) = 1, Q(m, 1) = 1; Q(m, 2k) = (m - 2k + 1)*Q(m+1, 2k-1) - (2k-1)*Q(m+2, k-2), m*Q(m, 2k+1) = (m - 2k)*Q(m+1, 2k) - 2k(m+1)*Q(m+2, 2k-1). (Wrong!) (End)

Examples

			Array begins:
     1,    1,    1,    1,    1,   1,   1,    1,    1,    1, ... (A000012)
     1,    1,    1,    1,    1,   1,   1,    1,    1,    1, ... (A000012)
    -2,   -1,    0,    1,    2,   3,   4,    5,    6,    7, ... (A023444)
    -5,   -4,   -3,   -2,   -1,   0,   1,    2,    3,    4, ... (A023447)
    12,    3,   -4,   -9,  -12, -13, -12,   -9,   -4,    3, ... (A127146)
    43,   28,   15,    4,   -5, -12, -17,  -20,  -21,  -20, ... (A127147)
  -120,  -15,   48,   75,   72,  45,   0,  -57, -120, -183, ... (A127148)
  -531, -288, -105,   24,  105, 144, 147,  120,   69,    0, ...
  1680,  105, -624, -735, -432, 105, 720, 1281, 1680, 1833, ...
		

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

See A105937 for another version.
Columns give A127137, A127138, A127144, A127145;
Rows give A127146, A127147, A127148.

Programs

  • Maple
    f:= proc(k) option remember;
          if `mod`(k,2)=0 then k!/(k/2)!
        else 2^(k-1)*((k-1)/2)!*add(binomial(2*j, j)/8^j, j=0..((k-1)/2))
          fi; end;
    Q:= proc(n, k) option remember;
          if n=0 then (-1)^binomial(k, 2)*f(k)
        elif k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq(seq(Q(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[0, k_]:= Q[0,k]= (-1)^Binomial[k, 2]*If[EvenQ[k], k!/(k/2)!, 2^(k-1)*((k-1)/2)!* Sum[Binomial[2*j, j]/8^j, {j, 0, (k-1)/2}] ];
    Q[n_, k_]:= Q[n,k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n+2, k-2], ((n -k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]];
    Table[Q[n-k,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def f(k):
        if (mod(k, 2)==0): return factorial(k)/factorial(k/2)
        else: return 2^(k-1)*factorial((k-1)/2)*sum(binomial(2*j, j)/8^j for j in (0..(k-1)/2))
    def Q(n,k):
        if (n==0): return (-1)^binomial(k, 2)*f(k)
        elif (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [[Q(n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 30 2020

Formula

E.g.f.: Sum_{k >= 0} Q(m,2k) x^k/k! = (1+4x)^((m-1)/2)/(1+2x)^(m/2), Sum_{k >= 0} Q(m,2k+1) x^k/k! = (1+4x)^((m-2)/2)/(1+2x)^((m+1)/2).

Extensions

More terms added by G. C. Greubel, Jan 30 2020

A127144 Q(2,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, 0, -3, -4, 15, 48, -105, -624, 945, 9600, -10395, -175680, 135135, 3790080, -2027025, -95235840, 34459425, 2752081920, -654729075, -90328089600, 13749310575, 3328103116800, -316234143225, -136191650918400, 7905853580625, 6131573025177600, -213458046676875, -301213549769932800
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A126967 interleaved with A001147.
Column 2 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(2, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[2, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(2,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.

A127145 Q(3,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, 1, -2, -9, 4, 75, 24, -735, -816, 8505, 17760, -114345, -388800, 1756755, 9233280, -30405375, -242968320, 585810225, 7125511680, -12439852425, -232838323200, 288735522075, 8450546227200, -7273385294175, -339004760371200, 197646339515625, 14945696794828800, -5763367260275625
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

Cf. A126965.
Column 3 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(3, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[3, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(3,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.
Showing 1-3 of 3 results.