cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A127138 Q(1,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, -1, -4, 3, 28, -15, -288, 105, 3984, -945, -70080, 10395, 1506240, -135135, -38384640, 2027025, 1133072640, -34459425, -38038533120, 654729075, 1431213235200, -13749310575, -59645279232000, 316234143225, 2726781752217600, -7905853580625, -135661078090137600, 213458046676875
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A001147 interleaved with A076729.
Column 1 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(1, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[1, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(1,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.

A127144 Q(2,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, 0, -3, -4, 15, 48, -105, -624, 945, 9600, -10395, -175680, 135135, 3790080, -2027025, -95235840, 34459425, 2752081920, -654729075, -90328089600, 13749310575, 3328103116800, -316234143225, -136191650918400, 7905853580625, 6131573025177600, -213458046676875, -301213549769932800
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A126967 interleaved with A001147.
Column 2 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(2, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[2, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(2,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.

A127145 Q(3,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, 1, -2, -9, 4, 75, 24, -735, -816, 8505, 17760, -114345, -388800, 1756755, 9233280, -30405375, -242968320, 585810225, 7125511680, -12439852425, -232838323200, 288735522075, 8450546227200, -7273385294175, -339004760371200, 197646339515625, 14945696794828800, -5763367260275625
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

Cf. A126965.
Column 3 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(3, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[3, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(3,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.

A127147 Q(n,5), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

43, 28, 15, 4, -5, -12, -17, -20, -21, -20, -17, -12, -5, 4, 15, 28, 43, 60, 79, 100, 123, 148, 175, 204, 235, 268, 303, 340, 379, 420, 463, 508, 555, 604, 655, 708, 763, 820, 879, 940, 1003, 1068, 1135, 1204, 1275, 1348, 1423, 1500, 1579, 1660, 1743, 1828, 1915, 2004, 2095, 2188
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

Comments

Numbers m such that m + 21 is a square. The product of two consecutive terms belongs to the sequence, see formula. - Klaus Purath, Oct 30 2022

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A row of A127080.

Programs

  • GAP
    List([0..60], n-> (n-8)^2 -21); # G. C. Greubel, Aug 12 2019
  • Magma
    [n^2-16*n+43: n in [0..60]]; // Vincenzo Librandi, Nov 12 2014
    
  • Maple
    seq((n-8)^2 -21, n=0..60); # G. C. Greubel, Aug 12 2019
  • Mathematica
    CoefficientList[Series[(60x^2 -101x +43)/(1-x)^3, {x,0,60}], x] (* Vincenzo Librandi, Nov 12 2014 *)
    (Range[0,60] -8)^2 -21 (* G. C. Greubel, Aug 12 2019 *)
  • PARI
    Vec(-(60*x^2-101*x+43)/(x-1)^3 + O(x^60)) \\ Colin Barker, Nov 12 2014
    
  • Sage
    [(n-8)^2 -21 for n in (0..60)] # G. C. Greubel, Aug 12 2019
    

Formula

a(n) = n^2 - 16*n + 43.
From Colin Barker, Nov 12 2014: (Start)
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: (43 -101*x + 60*x^2)/(1-x)^3. (End)
E.g.f.: (43 - 15*x + x^2)*exp(x). - G. C. Greubel, Aug 12 2019
From Klaus Purath, Oct 30 2022: (Start)
According to the formula a(n) = n^2 - 16*n + 43 when expanded to negative indices, a(n)*a(n+1) = a(a(n)+n) = (a(n)+n)*(a(n+1)-(n+1)) + 43.
a(n) = 2*a(n-1) - a(n-2) + 2. (End)

A127146 Q(n,4), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

12, 3, -4, -9, -12, -13, -12, -9, -4, 3, 12, 23, 36, 51, 68, 87, 108, 131, 156, 183, 212, 243, 276, 311, 348, 387, 428, 471, 516, 563, 612, 663, 716, 771, 828, 887, 948, 1011, 1076, 1143, 1212, 1283, 1356, 1431, 1508, 1587, 1668, 1751, 1836, 1923, 2012, 2103, 2196, 2291
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A row of A127080.

Programs

Formula

a(n) = n^2 - 10*n + 12.
a(n) = a(n-1) + 2*n - 11, with a(0)=12. - Vincenzo Librandi, Nov 23 2010
G.f.: (12 - 33*x + 23*x^2)/(1 - x)^3. - Harvey P. Dale, Apr 02 2011
E.g.f.: (12 - 9*x + x^2)*exp(x). - G. C. Greubel, Aug 25 2019

A127148 Q(n,6), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

-120, -15, 48, 75, 72, 45, 0, -57, -120, -183, -240, -285, -312, -315, -288, -225, -120, 33, 240, 507, 840, 1245, 1728, 2295, 2952, 3705, 4560, 5523, 6600, 7797, 9120, 10575, 12168, 13905, 15792, 17835, 20040, 22413, 24960, 27687, 30600, 33705, 37008, 40515, 44232, 48165
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A row of A127080.

Programs

  • GAP
    List([0..50], n-> n^3 -24*n^2 +128*n -120); # G. C. Greubel, Aug 12 2019
  • Magma
    [n^3 -24*n^2 +128*n -120: n in [0..50]]; // G. C. Greubel, Aug 12 2019
    
  • Maple
    seq(n^3 -24*n^2 +128*n -120, n=0..50); # G. C. Greubel, Aug 12 2019
  • Mathematica
    Table[n^3-24n^2+128n-120,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{-120,-15,48,75},50] (* Harvey P. Dale, Oct 22 2013 *)
  • PARI
    Vec(3*(91*x^3-204*x^2+155*x-40)/(x-1)^4 + O(x^50)) \\ Colin Barker, Nov 11 2014
    
  • Sage
    [n^3 -24*n^2 +128*n -120 for n in (0..50)] # G. C. Greubel, Aug 12 2019
    

Formula

a(n) = n^3 -24*n^2 +128*n -120.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=-120, a(1)=-15, a(2)=48, a(3)=75. - Harvey P. Dale, Oct 22 2013
G.f.: (-3)*(40-155*x+204*x^2-91*x^3)/(1-x)^4. - Colin Barker, Nov 11 2014
E.g.f.: (-120 + 105*x - 21*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 12 2019

A105937 Infinite square array read by antidiagonals: T(m, 0) = 1, T(m, 1) = m; T(m, k) = (m - k + 1) T(m+1, k-1) - (k-1) (m+1) T(m+2, k-2).

Original entry on oeis.org

1, 1, 0, 1, 1, -2, 1, 2, -2, 0, 1, 3, 0, -12, 36, 1, 4, 4, -24, 24, 0, 1, 5, 10, -30, -60, 420, -1800, 1, 6, 18, -24, -216, 720, -720, 0, 1, 7, 28, 0, -420, 420, 5040, -30240, 176400, 1, 8, 40, 48, -624, -960, 14400, -40320, 40320, 0, 1, 9, 54, 126, -756, -3780, 22680, 22680, -589680, 3764880, -28576800
Offset: 0

Views

Author

Vincent v.d. Noort, Mar 24 2007

Keywords

Examples

			Array begins
   1  1  1   1   1   1   1   1   1   1 ... (A000012)
   0  1  2   3   4   5   6   7   8   9 ... (A001477)
  -2 -2  0   4  10  18  28  40  54  70 ... (A028552)
   0 12 24  30  24   0  48 126 240 396 ... (A126935)
  36 24 60 216 420 624 756 720 396 360 ... (A126958)
...
		

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A127080 gives another version of the array.

Programs

  • Magma
    function T(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return n;
      else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 28 2020
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 1
        elif k=1 then n
        else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
          fi; end:
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 28 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[n-k,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 28 2020 *)
  • PARI
    T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) )); \\ G. C. Greubel, Jan 28 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return 1
        elif (k==1): return n
        else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 28 2020

Formula

See A127080 for e.g.f.

Extensions

More terms added by G. C. Greubel, Jan 28 2020

A127137 Define an array by Q(m, 0) = 1, Q(m, 1) = 1; Q(m, 2k) = (m - 2k + 1)*Q(m+1, 2k-1) - (2k-1)*Q(m+2, 2k-2), m*Q(m, 2k+1) = (m - 2k)*Q(m+1, 2k) - 2k(m+1)*Q(m+2, 2k-1). Sequence gives Q(0,n).

Original entry on oeis.org

1, 1, -2, -5, 12, 43, -120, -531, 1680, 8601, -30240, -172965, 665280, 4161555, -17297280, -116658675, 518918400, 3735104625, -17643225600, -134498225925, 670442572800, 5380583766075, -28158588057600, -236759435017875, 1295295050649600, 11364769115001225, -64764752532480000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A001813 interleaved with A090470.
Column 0 of array A127080.

Programs

  • Magma
    function b(n)
      if n mod 2 eq 0 then return Factorial(n)/Gamma(n/2+1);
      else return 2^(n-1)*Gamma((n+1)/2)*(&+[Binomial(2*j,j)/8^j: j in [0..((n-1)/2)]]);
      end if; return b; end function;
    [Round((-1)^Binomial(n, 2)*b(n)): n in [0..30]]; // G. C. Greubel, Jan 30 2020
    
  • Maple
    seq( (-1)^binomial(n,2)*(`if`(`mod`(n,2)=0, n!/(n/2)!, 2^(n-1)*((n-1)/2)!*add( binomial(2*j,j)/8^j, j=0..((n-1)/2)) ) ), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[0, k_]:= (-1)^Binomial[k, 2]*If[EvenQ[k], k!/(k/2)!, 2^((k-1)/2)*(k)!! Beta[1/2, 1/2, (k+1)/2]/Sqrt[2]]//FullSimplify; Table[Q[0, k], {k, 0, 30}] (* G. C. Greubel, Jan 30 2020 *)
  • PARI
    a(n) = (-1)^binomial(n, 2)*if(n%2==0, n!/(n/2)!, 2^(n-1)*((n-1)/2)!*sum( j=0, (n-1)/2, binomial(2*j,j)/8^j));
    vector(31, n, a(n-1)) \\ G. C. Greubel, Jan 30 2020
    
  • Sage
    @CachedFunction
    def b(k):
        if (mod(k,2)==0): return factorial(k)/factorial(k/2)
        else: return 2^(k-1)*factorial((k-1)/2)*sum(binomial(2*j,j)/8^j for j in (0..(k-1)/2))
    def a(k): return (-1)^binomial(k, 2)*b(k)
    [a(n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f..
a(n) = (-1)^binomial(n,2)*b(n), where b(2*n) = (2*n)!/n! and b(2*n+1) = 4^n*n!* Sum_{j=0..n} binomial(2*j,j)/8^j. - G. C. Greubel, Jan 30 2020

Extensions

Typo in name corrected by G. C. Greubel, Jan 30 2020

A126934 Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(0,2n).

Original entry on oeis.org

1, -2, 36, -1800, 176400, -28576800, 6915585600, -2337467932800, 1051860569760000, -607975409321280000, 438958245529964160000, -387161172557428389120000, 409616520565759235688960000, -512020650707199044611200000000, 746526108731096207043129600000000, -1255656914885703820246543987200000000
Offset: 0

Views

Author

Vincent v.d. Noort, Mar 21 2007

Keywords

Comments

|a(n)| is the number of functions f:{1,2,...,2n}->{1,2,...,2n} such that each element has either 0 or 2 preimages. That is, |(f^-1)(x)| is in {0,2} for all x in {1,2,...,2n}. - Geoffrey Critzer, Feb 24 2012.

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

See A105937 for the full array.
See also A127080.

Programs

  • Magma
    function T(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return n;
      else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
      end if; return T; end function;
    [T(0,2*n): n in [0..15]]; // G. C. Greubel, Jan 28 2020
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 1
        elif k=1 then n
        else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
          fi; end:
    seq(T(0, 2*k), n=0..15); # G. C. Greubel, Jan 28 2020
  • Mathematica
    nn=40;b=(1-(1-2x^2)^(1/2))/x;Select[Range[0,nn]!CoefficientList[Series[1/(1-x b),{x,0,nn}],x],#>0&]*Table[(-1)^(n),{n,0,nn/2}]  (* Geoffrey Critzer, Feb 24 2012 *)
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[0, 2*n], {n,0,15}] (* G. C. Greubel, Jan 28 2020 *)
  • PARI
    T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
    vector(15, n, T(0,2*(n-1)) ) \\ G. C. Greubel, Jan 28 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return 1
        elif (k==1): return n
        else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
    [T(0, 2*n) for n in (0..15)] # G. C. Greubel, Jan 28 2020

Formula

a(n) = (-1)^n * A001147(n) * A001813(n). - N. J. A. Sloane, Mar 21 2007
E.g.f. for positive values with interpolated zeros:
(1-2*x^2)^(-1/2) which is exp(log(1/(1-x*G(x)))) where
G(x) is the e.g.f. for A036770. - Geoffrey Critzer, Feb 24 2012
a(n) = (-8)^n * gamma(n + 1/2)^2 / Pi. - Daniel Suteu, Jan 06 2017
Showing 1-9 of 9 results.