A127080
Infinite square array read by antidiagonals: Q(m, 0) = 1, Q(m, 1) = 1; Q(m, 2k) = (m - 2k + 1)*Q(m+1, 2k-1) - (2k-1)*Q(m+2,2k-2), m*Q(m, 2k+1) = (m - 2k)*Q(m+1, 2k) - 2k(m+1)*Q(m+2, 2k-1).
Original entry on oeis.org
1, 1, 1, 1, 1, -2, 1, 1, -1, -5, 1, 1, 0, -4, 12, 1, 1, 1, -3, 3, 43, 1, 1, 2, -2, -4, 28, -120, 1, 1, 3, -1, -9, 15, -15, -531, 1, 1, 4, 0, -12, 4, 48, -288, 1680, 1, 1, 5, 1, -13, -5, 75, -105, 105, 8601, 1, 1, 6, 2, -12, -12, 72, 24, -624, 3984, -30240, 1, 1, 7, 3, -9, -17, 45, 105, -735, 945, -945, -172965
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, ... (A023444)
-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, ... (A023447)
12, 3, -4, -9, -12, -13, -12, -9, -4, 3, ... (A127146)
43, 28, 15, 4, -5, -12, -17, -20, -21, -20, ... (A127147)
-120, -15, 48, 75, 72, 45, 0, -57, -120, -183, ... (A127148)
-531, -288, -105, 24, 105, 144, 147, 120, 69, 0, ...
1680, 105, -624, -735, -432, 105, 720, 1281, 1680, 1833, ...
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
f:= proc(k) option remember;
if `mod`(k,2)=0 then k!/(k/2)!
else 2^(k-1)*((k-1)/2)!*add(binomial(2*j, j)/8^j, j=0..((k-1)/2))
fi; end;
Q:= proc(n, k) option remember;
if n=0 then (-1)^binomial(k, 2)*f(k)
elif k<2 then 1
elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
fi; end;
seq(seq(Q(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 30 2020
-
Q[0, k_]:= Q[0,k]= (-1)^Binomial[k, 2]*If[EvenQ[k], k!/(k/2)!, 2^(k-1)*((k-1)/2)!* Sum[Binomial[2*j, j]/8^j, {j, 0, (k-1)/2}] ];
Q[n_, k_]:= Q[n,k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n+2, k-2], ((n -k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]];
Table[Q[n-k,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 30 2020 *)
-
@CachedFunction
def f(k):
if (mod(k, 2)==0): return factorial(k)/factorial(k/2)
else: return 2^(k-1)*factorial((k-1)/2)*sum(binomial(2*j, j)/8^j for j in (0..(k-1)/2))
def Q(n,k):
if (n==0): return (-1)^binomial(k, 2)*f(k)
elif (k<2): return 1
elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
[[Q(n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 30 2020
A126934
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(0,2n).
Original entry on oeis.org
1, -2, 36, -1800, 176400, -28576800, 6915585600, -2337467932800, 1051860569760000, -607975409321280000, 438958245529964160000, -387161172557428389120000, 409616520565759235688960000, -512020650707199044611200000000, 746526108731096207043129600000000, -1255656914885703820246543987200000000
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 131.
- S. Goodenough, C. Lavault, On subsets of Riordan subgroups and Heisenberg--Weyl algebra, arXiv preprint arXiv:1404.1894 [cs.DM], 2014-2016.
- S. Goodenough, C. Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16.
-
function T(n,k)
if k eq 0 then return 1;
elif k eq 1 then return n;
else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
end if; return T; end function;
[T(0,2*n): n in [0..15]]; // G. C. Greubel, Jan 28 2020
-
T:= proc(n, k) option remember;
if k=0 then 1
elif k=1 then n
else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
fi; end:
seq(T(0, 2*k), n=0..15); # G. C. Greubel, Jan 28 2020
-
nn=40;b=(1-(1-2x^2)^(1/2))/x;Select[Range[0,nn]!CoefficientList[Series[1/(1-x b),{x,0,nn}],x],#>0&]*Table[(-1)^(n),{n,0,nn/2}] (* Geoffrey Critzer, Feb 24 2012 *)
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[0, 2*n], {n,0,15}] (* G. C. Greubel, Jan 28 2020 *)
-
T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
vector(15, n, T(0,2*(n-1)) ) \\ G. C. Greubel, Jan 28 2020
-
@CachedFunction
def T(n, k):
if (k==0): return 1
elif (k==1): return n
else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
[T(0, 2*n) for n in (0..15)] # G. C. Greubel, Jan 28 2020
A126935
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(n,3).
Original entry on oeis.org
0, -12, -24, -30, -24, 0, 48, 126, 240, 396, 600, 858, 1176, 1560, 2016, 2550, 3168, 3876, 4680, 5586, 6600, 7728, 8976, 10350, 11856, 13500, 15288, 17226, 19320, 21576, 24000, 26598, 29376, 32340, 35496, 38850, 42408, 46176, 50160, 54366, 58800, 63468, 68376, 73530
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
[n*(n+2)*(n-5): n in [0..50]]; // G. C. Greubel, Jan 29 2020
-
seq( n*(n+2)*(n-5), n=0..50); # G. C. Greubel, Jan 29 2020
-
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[n, 3], {n,0,50}] (* G. C. Greubel, Jan 29 2020 *)
-
vector(50, n, my(m=n-1); m*(m+2)*(m-5) ) \\ G. C. Greubel, Jan 29 2020
-
[n*(n+2)*(n-5) for n in (0..50)] # G. C. Greubel, Jan 29 2020
A126958
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(n,4).
Original entry on oeis.org
36, 24, -60, -216, -420, -624, -756, -720, -396, 360, 1716, 3864, 7020, 11424, 17340, 25056, 34884, 47160, 62244, 80520, 102396, 128304, 158700, 194064, 234900, 281736, 335124, 395640, 463884, 540480, 626076, 721344, 826980, 943704, 1072260, 1213416, 1367964
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
List([0..40], n-> (n+3)*(n+1)*(n^2 -10*n +12)); # G. C. Greubel, Jan 29 2020
-
[(n+3)*(n+1)*(n^2 -10*n +12): n in [0..40]]; // G. C. Greubel, Jan 29 2020
-
seq( (n+3)*(n+1)*(n^2 -10*n +12), n=0..40); # G. C. Greubel, Jan 29 2020
-
Table[(n+3)*(n+1)*(n^2 -10*n +12), {n,0,40}] (* G. C. Greubel, Jan 29 2020 *)
-
vector(41, n, my(m=n-1); (m+3)*(m+1)*(m^2 -10*m +12)) \\ G. C. Greubel, Jan 29 2020
-
[(n+3)*(n+1)*(n^2 -10*n +12) for n in (0..40)] # G. C. Greubel, Jan 29 2020
A126962
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(1,n).
Original entry on oeis.org
1, 1, -2, -12, 24, 420, -720, -30240, 40320, 3764880, -3628800, -728481600, 479001600, 203545742400, -87178291200, -77806624896000, 20922789888000, 39045031657632000, -6402373705728000, -24904933604014464000, 2432902008176640000, 19678195269815322240000, -1124000727777607680000
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
function T(n,k)
if k eq 0 then return 1;
elif k eq 1 then return n;
else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
end if; return T; end function;
[T(1,n): n in [0..25]]; // G. C. Greubel, Jan 29 2020
-
T:= proc(n, k) option remember;
if k=0 then 1
elif k=1 then n
else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
fi; end:
seq(T(1, n), n=0..25); # G. C. Greubel, Jan 29 2020
-
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[1, n], {n,0,25}] (* G. C. Greubel, Jan 29 2020 *)
-
T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
vector(25, n, T(1, (n-1)) ) \\ G. C. Greubel, Jan 29 2020
-
@CachedFunction
def T(n, k):
if (k==0): return 1
elif (k==1): return n
else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
[T(1, n) for n in (0..25)] # G. C. Greubel, Jan 29 2020
A127067
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(2,n).
Original entry on oeis.org
1, 2, 0, -24, -60, 720, 5040, -40320, -589680, 3628800, 99792000, -479001600, -23740516800, 87178291200, 7682586912000, -20922789888000, -3281772285792000, 6402373705728000, 1801868049805824000, -2432902008176640000, -1241948957556827520000, 1124000727777607680000
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
function T(n, k)
if k eq 0 then return 1;
elif k eq 1 then return n;
else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
end if; return T; end function;
[T(2, n): n in [0..25]]; // G. C. Greubel, Jan 30 2020
-
T:= proc(n, k) option remember;
if k=0 then 1
elif k=1 then n
else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
fi; end:
seq(T(2, n), n=0..25); # G. C. Greubel, Jan 30 2020
-
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[2, n], {n,0,25}] (* G. C. Greubel, Jan 30 2020 *)
-
T(n, k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
vector(25, n, T(2, n-1) ) \\ G. C. Greubel, Jan 30 2020
-
@CachedFunction
def T(n, k):
if (k==0): return 1
elif (k==1): return n
else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
[T(2, n) for n in (0..25)] # G. C. Greubel, Jan 30 2020
A127068
Let d(m, 0) = 1, d(m, 1) = m, and d(m, k) = (m - k + 1)*d(m+1, k-1) - (k-1)*(m+1) d(m+2, k-2). Sequence gives d(3,n).
Original entry on oeis.org
1, 3, 4, -30, -216, 420, 14400, 22680, -1411200, -8482320, 195955200, 2399997600, -36883123200, -788107320000, 9066542284800, 318173519664000, -2824576634880000, -159078423407904000, 1088403529973760000, 97970873094110016000, -508476519708917760000, -73631427647097640320000
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
function T(n, k)
if k eq 0 then return 1;
elif k eq 1 then return n;
else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
end if; return T; end function;
[T(3, n): n in [0..25]]; // G. C. Greubel, Jan 29 2020
-
T:= proc(n, k) option remember;
if k=0 then 1
elif k=1 then n
else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
fi; end:
seq(T(3, n), n=0..25); # G. C. Greubel, Jan 29 2020
-
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[3, n], {n,0,25}] (* G. C. Greubel, Jan 29 2020 *)
-
T(n, k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
vector(25, n, T(3, (n-1)) ) \\ G. C. Greubel, Jan 29 2020
-
@CachedFunction
def T(n, k):
if (k==0): return 1
elif (k==1): return n
else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
[T(3, n) for n in (0..25)] # G. C. Greubel, Jan 29 2020
A127070
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(4,n).
Original entry on oeis.org
1, 4, 10, -24, -420, -960, 22680, 201600, -1496880, -36288000, 64864800, 7823692800, 25297272000, -2092278988800, -18988521552000, 690452066304000, 11457025515936000, -277436193914880000, -7430805000755136000, 133809610449715200000, 5500591866494524800000, -76432049488877322240000
Offset: 0
Vincent v.d. Noort, Mar 21 2007
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
-
function T(n, k)
if k eq 0 then return 1;
elif k eq 1 then return n;
else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
end if; return T; end function;
[T(4, n): n in [0..25]]; // G. C. Greubel, Jan 29 2020
-
T:= proc(n, k) option remember;
if k=0 then 1
elif k=1 then n
else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
fi; end:
seq(T(4, n), n=0..25); # G. C. Greubel, Jan 29 2020
-
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[4, n], {n,0,25}] (* G. C. Greubel, Jan 29 2020 *)
-
T(n, k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
vector(25, n, T(4, (n-1)) ) \\ G. C. Greubel, Jan 29 2020
-
@CachedFunction
def T(n, k):
if (k==0): return 1
elif (k==1): return n
else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
[T(4, n) for n in (0..25)] # G. C. Greubel, Jan 29 2020
Showing 1-8 of 8 results.
Comments