cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127147 Q(n,5), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

43, 28, 15, 4, -5, -12, -17, -20, -21, -20, -17, -12, -5, 4, 15, 28, 43, 60, 79, 100, 123, 148, 175, 204, 235, 268, 303, 340, 379, 420, 463, 508, 555, 604, 655, 708, 763, 820, 879, 940, 1003, 1068, 1135, 1204, 1275, 1348, 1423, 1500, 1579, 1660, 1743, 1828, 1915, 2004, 2095, 2188
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

Comments

Numbers m such that m + 21 is a square. The product of two consecutive terms belongs to the sequence, see formula. - Klaus Purath, Oct 30 2022

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A row of A127080.

Programs

  • GAP
    List([0..60], n-> (n-8)^2 -21); # G. C. Greubel, Aug 12 2019
  • Magma
    [n^2-16*n+43: n in [0..60]]; // Vincenzo Librandi, Nov 12 2014
    
  • Maple
    seq((n-8)^2 -21, n=0..60); # G. C. Greubel, Aug 12 2019
  • Mathematica
    CoefficientList[Series[(60x^2 -101x +43)/(1-x)^3, {x,0,60}], x] (* Vincenzo Librandi, Nov 12 2014 *)
    (Range[0,60] -8)^2 -21 (* G. C. Greubel, Aug 12 2019 *)
  • PARI
    Vec(-(60*x^2-101*x+43)/(x-1)^3 + O(x^60)) \\ Colin Barker, Nov 12 2014
    
  • Sage
    [(n-8)^2 -21 for n in (0..60)] # G. C. Greubel, Aug 12 2019
    

Formula

a(n) = n^2 - 16*n + 43.
From Colin Barker, Nov 12 2014: (Start)
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: (43 -101*x + 60*x^2)/(1-x)^3. (End)
E.g.f.: (43 - 15*x + x^2)*exp(x). - G. C. Greubel, Aug 12 2019
From Klaus Purath, Oct 30 2022: (Start)
According to the formula a(n) = n^2 - 16*n + 43 when expanded to negative indices, a(n)*a(n+1) = a(a(n)+n) = (a(n)+n)*(a(n+1)-(n+1)) + 43.
a(n) = 2*a(n-1) - a(n-2) + 2. (End)