cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127148 Q(n,6), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

-120, -15, 48, 75, 72, 45, 0, -57, -120, -183, -240, -285, -312, -315, -288, -225, -120, 33, 240, 507, 840, 1245, 1728, 2295, 2952, 3705, 4560, 5523, 6600, 7797, 9120, 10575, 12168, 13905, 15792, 17835, 20040, 22413, 24960, 27687, 30600, 33705, 37008, 40515, 44232, 48165
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A row of A127080.

Programs

  • GAP
    List([0..50], n-> n^3 -24*n^2 +128*n -120); # G. C. Greubel, Aug 12 2019
  • Magma
    [n^3 -24*n^2 +128*n -120: n in [0..50]]; // G. C. Greubel, Aug 12 2019
    
  • Maple
    seq(n^3 -24*n^2 +128*n -120, n=0..50); # G. C. Greubel, Aug 12 2019
  • Mathematica
    Table[n^3-24n^2+128n-120,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{-120,-15,48,75},50] (* Harvey P. Dale, Oct 22 2013 *)
  • PARI
    Vec(3*(91*x^3-204*x^2+155*x-40)/(x-1)^4 + O(x^50)) \\ Colin Barker, Nov 11 2014
    
  • Sage
    [n^3 -24*n^2 +128*n -120 for n in (0..50)] # G. C. Greubel, Aug 12 2019
    

Formula

a(n) = n^3 -24*n^2 +128*n -120.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=-120, a(1)=-15, a(2)=48, a(3)=75. - Harvey P. Dale, Oct 22 2013
G.f.: (-3)*(40-155*x+204*x^2-91*x^3)/(1-x)^4. - Colin Barker, Nov 11 2014
E.g.f.: (-120 + 105*x - 21*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 12 2019