cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127180 a(n) = smallest possible (product of b(k)'s + product of c(k)'s), where the positive integers <= n are partitioned somehow into {b(k)} and {c(k)}.

Original entry on oeis.org

2, 2, 3, 5, 10, 22, 54, 142, 402, 1206, 3810, 12636, 43776, 157824, 590520, 2287080, 9148320, 37719360, 160029696, 697553280, 3119552640, 14295585696, 67052240640, 321571257120, 1575370944000, 7876854720000, 40164235953600
Offset: 0

Views

Author

Leroy Quet, Jan 07 2007

Keywords

Comments

The maximum (product of b(k)'s + product of c(k)'s) occurs, for n>=2, when {b(k)} = (2,3,4,...n) and {c(k)} = (1). a(1) = 2 because the product over the empty set is defined here as 1.

Examples

			By partitioning (1,2,3,...8) into {b(k)} and {c(k)} so that {b(k)} = (1,4,6,8) and {c(k)} = (2,3,5,7), then (product of b(k)'s + product of c(k)'s) is minimized. Therefore a(8) = 1*4*6*8 + 2*3*5*7 = 402.
		

Crossrefs

Programs

  • Maple
    LQprod := proc(S) if nops(S) = 0 then 1 ; else product(S[i],i=1..nops(S)) ; fi ; end: A127180 := proc(n) local S,m,B,b,c,s,res,i ; res := -1 ; S := {} ; for i from 1 to n do S := S union {i} ; od; for m from 0 to n/2 do B := combinat[permute](n,m) ; for i from 1 to nops(B) do b := op(i,B) ; c := S minus convert(b,set) ; s := LQprod(b)+LQprod(c) ; if res < 0 or s < res then res := s ; fi ; od ; od ; RETURN(res) ; end: for n from 1 to 20 do A127180(n) ; od ; # R. J. Mathar, Jan 10 2007
  • Mathematica
    a[n_] := a[n] = Module[{s, t}, {s, t} = MinimalBy[{#, Complement[Range[n], #]}& /@ Subsets[Range[n]], Abs[Times @@ #[[1]] - Times @@ #[[2]]]&][[1]]; Times @@ s + Times @@ t];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 24}] (* Jean-François Alcover, May 06 2023 *)

Formula

a(n) <= A060696(n+1) = A076051(n) considering the interleaved partition b={2,4,6,..}, c={1,3,5, 7,...}. - R. J. Mathar, Jan 10 2007
a(n) = A200743(n) + A200744(n) = (A200744(n)^2 - A200743(n)^2) / A038667(n). - Max Alekseyev, Apr 08 2022

Extensions

a(9)-a(13) from R. J. Mathar, Jan 10 2007
a(14)-a(26) from Ray Chandler, Feb 14 2007