cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127218 Half-indexed Lucas numbers second version L(n)=A000032=Lucas numbers a(0)=2, a(1)=2, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(2n)=L(n), for n>2: a(2n+1)=L(n)+L(n-3)=2*L(n-1) for n>5: a(n)+a(n+2)=a(n+4) a(2n)=L(n), so a(n)=L(n/2).

Original entry on oeis.org

2, 2, 1, 2, 3, 3, 4, 6, 7, 8, 11, 14, 18, 22, 29, 36, 47, 58, 76, 94, 123, 152, 199, 246, 322, 398, 521, 644, 843, 1042, 1364, 1686, 2207, 2728, 3571, 4414, 5778, 7142, 9349, 11556, 15127, 18698, 24476, 30254, 39603, 48952, 64079
Offset: 0

Views

Author

Miklos Kristof, Mar 28 2007

Keywords

Comments

b(n)=A096748(n-1): for n>5: b(n)+b(n+4)=a(n+2) for n>5: a(n)+a(n+4)=5*b(n+2).

Crossrefs

Programs

  • Maple
    b[0]:=2:b[1]:=1:for n from 2 to 80 do b[n]:=b[n-1]+b[n-2] od: a[0]:=2:a[1]:=2:a[2]:=1:a[3]:=2:a[4]:=3:a[5]:=3: for n from 3 to 39 do a[2*n]:=b[n]:a[2*n+1]:=b[n]+b[n-3] od: seq(a[n],n=0..79);
  • Mathematica
    LinearRecurrence[{0,1,0,1},{2,2,1,2,3,3,4,6,7,8},60] (* Harvey P. Dale, Jun 22 2022 *)
  • PARI
    Vec((1 + x)*(2 - x^2 + x^3 - x^4 + x^7 - x^8) / (1 - x^2 - x^4) + O(x^45)) \\ Colin Barker, Aug 03 2020

Formula

From Colin Barker, Aug 03 2020: (Start)
G.f.: (1 + x)*(2 - x^2 + x^3 - x^4 + x^7 - x^8) / (1 - x^2 - x^4).
a(n) = a(n-2) + a(n-4) for n>10.
(End)