cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127220 a(n) = 3^n*tetranacci(n) or (2^n)*A001648(n).

Original entry on oeis.org

3, 27, 189, 1215, 6318, 37179, 216513, 1253151, 7223661, 41806692, 241805655, 1398221271, 8084811933, 46753521975, 270362105694, 1563413859999, 9040715391141, 52279683047127, 302316992442837, 1748203962973380, 10109314209860523, 58458991419115875
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215]; [n le 4 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81}, {3, 27, 189, 1215}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(108*x^3 +27*x^2 +6*x +1)/(81*x^4 +27*x^3 +9*x^2 +3*x -1)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3},{3,0,0,0},{0,3,0,0},{0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) + 27*a(n-3) + 81*a(n-4).
G.f.: -3*x*(108*x^3+27*x^2+6*x+1)/(81*x^4+27*x^3+9*x^2+3*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A127222 a(n) = 3^n*pentanacci(n) or (3^n)*A023424(n-1).

Original entry on oeis.org

3, 27, 189, 1215, 7533, 41553, 247131, 1463103, 8640837, 50959287, 300264165, 1771292853, 10447598619, 61618989627, 363414767589, 2143339285311, 12641143135581, 74555586323649, 439717218548643, 2593383067853775, 15295369041550269, 90209719910309895
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215, 7533]; [n le 5 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4) + 243*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81, 243}, {3, 27, 189, 1215, 7533}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3,3},{3,0,0,0,0},{0,3,0,0,0},{0,0,3,0,0},{0,0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = 3*a(n-1)+9*a(n-2)+27*a(n-3)+81*a(n-4)+243*a(n-5). - Colin Barker, Sep 02 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013
Showing 1-2 of 2 results.