cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127248 Triangle whose k-th column is generated by (1-A010060(1+k)*x)*x^k.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, 0, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 10 2007

Keywords

Examples

			Triangle begins:
  1;
  -1, 1;
  0, -1, 1;
  0, 0, 0, 1;
  0, 0, 0, -1, 1;
  0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, -1, 1;
  0, 0, 0, 0, 0, 0, 0, -1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Inverse is A127247.
Row sums are 1-A010060(n).

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[(1 - ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)

Extensions

More terms from Amiram Eldar, Aug 04 2023

A127246 Row sums of a Thue-Morse related triangle.

Original entry on oeis.org

1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1
Offset: 0

Views

Author

Paul Barry, Jan 10 2007

Keywords

Crossrefs

Row sums of A127247.
Cf. A010060.

Programs

  • Mathematica
    a[n_] := Sum[Product[ThueMorse[i], {i, k+1, n}], {k, 0, n}]; Array[a, 100, 0] (* Amiram Eldar, Aug 04 2023 *)

Formula

a(n) = Sum_{k=0..n} Product_{j=0..n-k-1} A010060(n-j).

Extensions

More terms from Amiram Eldar, Aug 04 2023

A127249 A product of Thue-Morse related triangles.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 10 2007

Keywords

Examples

			Triangle begins:
  1;
  2, 1;
  2, 2, 1;
  0, 0, 0, 1;
  0, 0, 0, 2, 1;
  0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 2, 1;
  0, 0, 0, 0, 0, 0, 2, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Product of A127243 with A127247.
Inverse A127251 is given by (-1)^(n+k)T(n,k).

Programs

  • Mathematica
    T1[n_, k_] := SeriesCoefficient[(1 + ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127243 *)
    T2[n_, k_] := Product[ThueMorse[i], {i, k + 1, n}]; (* A127247 *)
    T[n_, k_] := Sum[T2[n, j]*T1[j, k], {j, 0, n}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)

Extensions

More terms from Amiram Eldar, Aug 04 2023
Showing 1-3 of 3 results.