Original entry on oeis.org
1, 0, 1, -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
-1, 0, 1;
0, 0, 0, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, -1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
...
-
T1[n_, k_] := SeriesCoefficient[(1 + ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127243 *)
T2[n_, k_] := SeriesCoefficient[(1 - ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127248 *)
T[n_, k_] := Sum[T2[n, j]*T1[j, k], {j, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
A127247
A Thue-Morse falling factorial triangle.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
0, 0, 0, 1;
0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
...
-
T[n_, k_] := Product[ThueMorse[i], {i, k+1, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
A127251
Inverse of number triangle A127249.
Original entry on oeis.org
1, -2, 1, 2, -2, 1, 0, 0, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1;
-2, 1;
2, -2, 1;
0, 0, 0, 1;
0, 0, 0, -2, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, -2, 1;
0, 0, 0, 0, 0, 0, 2, -2, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
...
-
T1[n_, k_] := SeriesCoefficient[(1 - ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127248 *)
T2[n_, k_] := (-1)^(n-k) * Product[ThueMorse[i], {i, k+1, n}]; (* A127244 *)
T[n_, k_] := Sum[T2[n, j]*T1[j, k], {j, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
Showing 1-3 of 3 results.
Comments